首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Smad4 is required for the normal organization of the cartilage growth plate   总被引:6,自引:0,他引:6  
Zhang J  Tan X  Li W  Wang Y  Wang J  Cheng X  Yang X 《Developmental biology》2005,284(2):311-322
Smad4 is the central intracellular mediator of transforming growth factor-beta (TGF-beta) signals. To study the role of Smad4 in skeletal development, we introduced a conditional mutation of the gene in chondrocytes using Cre--loxP system. We showed that Smad4 was expressed strongly in prehypertrophic and hypertrophic chondrocytes. The abrogation of Smad4 in chondrocytes resulted in dwarfism with a severely disorganized growth plate characterized by expanded resting zone of chondrocytes, reduced chondrocyte proliferation, accelerated hypertrophic differentiation, increased apoptosis and ectopic bone collars in perichondrium. Meanwhile, Smad4 mutant mice exhibited decreased expression of molecules in Indian hedgehog/parathyroid hormone-related protein (Ihh/PTHrP) signaling. The cultured mutant metatarsal bones failed to response to TGF-beta1, while the hypertrophic differentiation was largely inhibited by Sonic hedgehog (Shh). This indicated that Ihh/PTHrP inhibited the hypertrophic differentiation of chondrocytes independent of the Smad4-mediated TGF-beta signals. All these data provided the first genetic evidence demonstrating that Smad4-mediated TGF-beta signals inhibit the chondrocyte hypertrophic differentiation, and are required for maintaining the normal organization of chondrocytes in the growth plate.  相似文献   

2.
3.
During long bone development and post-natal growth, the cartilaginous model of the skeleton is progressively replaced by bone, a process known as endochondral ossification. In the primary spongiosa, osteoclasts degrade the mineralized cartilage produced by hypertrophic chondrocytes to generate cartilage trabeculae that osteoblasts embed in bone matrix. This leads to the formation of the trabecular bone network of the secondary spongiosa that will undergo continuous remodeling. Osteoclasts are specialized in mineralized tissue degradation, with the combined ability to solubilize hydroxyapatite and to degrade extracellular matrix proteins. We reported previously that osteoclasts lacking Dock5 could not degrade bone due to abnormal podosome organization and absence of sealing zone formation. Consequently, adult Dock5/ mice have increased trabecular bone mass. We used Dock5/ mice to further investigate the different functions of osteoclast during endochondral bone formation. We show that long bones are overall morphologically normal in developing and growing Dock5/ mice. We demonstrate that Dock5/ mice also have normal hypertrophic cartilage and cartilage trabecular network. Conversely, trabecular bone volume increased progressively in the secondary spongiosa of Dock5/ growing mice as compared to Dock5+/+ animals, even though their osteoclast numbers were the same. In vitro, we show that Dock5/ osteoclasts do present acidic compartments at the ventral plasma membrane and produce normal amounts of active MMP9, TRAP and CtsK for matrix protein degradation but they are unable to solubilize minerals. These observations reveal that contrarily to bone resorption, the ability of osteoclasts to dissolve minerals is dispensable for the degradation of mineralized hypertrophic cartilage during endochondral bone formation.  相似文献   

4.
The small Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 have distinct roles in regulating neutrophil chemotaxis; however, little is known about their possible unique roles in mediating bacterial killing. To elucidate the relative roles of Rac1 and Rac2 in regulating neutrophil-mediated bacterial killing, we utilized the previously described mice model in which mouse neutrophils are deficient in either Rac1, Rac2, or both isoforms. We demonstrate here that while both Rac isoforms are required for normal neutrophil chemotaxis and bacterial killing, they have non-overlapping roles in bacterial phagocytosis and NADPH oxidase function.  相似文献   

5.
The Rho family of small GTPases has been implicated in many neurological disorders including mental retardation, but whether they are involved in primary microcephaly (microcephalia vera) is unknown. Here, we examine the role of Rac1 in mammalian neural progenitors and forebrain development by a conditional gene-targeting strategy using the Foxg1-Cre line to delete floxed-Rac1 alleles in the telencephalic ventricular zone (VZ) of mouse embryos. We found that Rac1 deletion in the telencephalic VZ progenitors resulted in reduced sizes of both the striatum and cerebral cortex. Analyses further indicated that this abnormality was caused by accelerated cell-cycle exit and increased apoptosis during early corticogenesis (approximately E14.5), leading to a decrease of the neural progenitor pool in mid-to-late telencephalic development (E16.5 to E18.5). Moreover, the formation of patch-matrix compartments in the striatum was impaired by Rac1-deficiency. Together, these results suggest that Rac1 regulates self-renewal, survival, and differentiation of telencephalic neural progenitors, and that dysfunctions of Rac1 may lead to primary microcephaly.  相似文献   

6.
Cre/lox位点特异重组系统是植物基因工程中的重要工具,利用其可以在转基因植物中对目的基因实现精确删除和定点整合。概述Cre/lox系统的基本结构及作用方式,并以基因删除和定点整合为重点,详细介绍该系统在这两方面的应用。  相似文献   

7.
Small Rho family GTPases are important regulators of cellular traffic. Emerging evidence now implicates Rac1 and Rac-dependent actin reorganisation in insulin-induced recruitment of glucose transporter-4 (GLUT4) to the cell surface of muscle cells and mature skeletal muscle. This review summarises the current thinking on the regulation of Rac1 by insulin, the role of Rac-dependent cortical actin remodelling in GLUT4 traffic, and the impact of Rac1 towards insulin resistance in skeletal muscle.  相似文献   

8.
9.
Ontogenetic changes in the human femur associated with the acquisition of bipedal locomotion, especially the development of the bicondylar angle, have been well documented. The purpose of this study is to quantify changes in the three-dimensional structure of trabecular bone in the human proximal femur in relation to changing functional and external loading patterns with age. High-resolution X-ray computed tomography scan data were collected for 15 juvenile femoral specimens ranging in age from prenatal to approximately nine years of age. Serial slices were collected for the entire proximal femur of each individual with voxel resolutions ranging from 0.017 to 0.046 mm depending on the size of the specimen. Spherical volumes of interest were defined within the proximal femur, and the bone volume fraction, trabecular thickness, trabecular number, and fabric anisotropy were calculated in three dimensions. Bone volume fraction, trabecular number, and degree of anisotropy decrease between the age of 6 months and 12 months, with the lowest values for these parameters occurring in individuals near 12 months of age. By age 2-3 years, the bone volume, thickness, and degree of anisotropy increase slightly, and regions in the femoral neck become more anisotropic corresponding to the thickening of the inferior cortical bone of the neck. These results suggest that trabecular structure in the proximal femur reflects the shift in external loading patterns associated with the initiation of unassisted walking in infants.  相似文献   

10.
Rho family proteins are constitutively activated in the highly invasive human fibrosarcoma HT1080 cells. We now investigated the specific roles of Rac1 and Rac2 in regulating morphology, F-actin organization, adhesion, migration, and chemotaxis of HT1080 cells. Downregulation of Rac1 using specific siRNA probes resulted in cell rounding, markedly decreased spreading, adhesion, and chemotaxis of HT1080 cells. 2D migration on laminin-coated surfaces in contrast was not markedly affected. Selective Rac2 depletion did not affect cell morphology, cell adhesion, and 2D migration, but significantly reduced chemotaxis. Downregulation of both Rac1 and Rac2 resulted in an even more marked reduction, but not complete abolishment, of chemotaxis indicating distinct as well as overlapping roles of both proteins in chemotaxis. Rac1 thus is selectively required for HT1080 cell spreading and adhesion whereas Rac1 and Rac2 are both required for efficient chemotaxis.  相似文献   

11.
The small GTPase Rac1 acts as a molecular switch of intracellular signaling in mammals. For understanding the regulatory mechanism, it is important to identify subcellular locations in which Rac1 is activated following multiple extracellular stimuli. However, it is difficult to detect Rac1 activation in situ in animal tissues, and thus a novel method is highly desirable. Here, we report a simple method to visualize the activation of endogenous Rac1 in mouse skeletal muscle fibers. In this assay, specific interaction between activated Rac1 and a binding polypeptide is detected by immunofluorescent microscopy. This approach is readily applicable to other small GTPases.  相似文献   

12.
Importin beta1 (Impbeta)/karyopherin beta1 (Kpnb1) mediates the nuclear import of a large variety of substrates. This study aimed to investigate the requirement for the Kpnb1 gene in mouse development, using a gene trap line, B6-CB-Ayu8108(GtgeoIMEG) (Ayu8108(geo)), in which the trap vector was inserted into the promoter region of the Kpnb1 gene, but in reverse orientation of the Kpnb1 gene. Ayu8108(geo/geo) homozygous embryos could develop to the blastocyst stage, but died before embryonic day 5.5, and expression of the Kpnb1 gene in homozygous blastocysts was undetectable. We also replaced the betageo gene with Impbeta cDNA through Cre-mediated recombination to rescue Impbeta expression. Homozygous mice for the rescued allele Ayu8108(Impbeta/Impbeta) were born and developed normally. These results demonstrated that the cause of post-implantation lethality of Ayu8108(geo/geo) homozygous embryos was impaired expression of the Kpnb1 gene, indicating indispensable roles of Impbeta1 in early development of mice.  相似文献   

13.
随着植物转基因研究的不断深入,对基因重组系统提出了新的要求。位点特异性重组系统具有高效、精确等的优点,在植物基因工程领域的应用越来越广泛。对常用的三类位点特异性重组系统的作用机制、优缺点及其应用进展进行了全面的综述,期望为植物转基因研究提供技术参考。对于目前研究较为热点的基因编辑技术CRISPR-Cas系统作了简要概述。  相似文献   

14.
The small GTPase Rac1 can stimulate various signaling pathways following a tightly controlled GDP-GTP exchange. A splicing variant designated Rac1b was found to exist predominantly in the active GTP-bound state but the functional consequences of its expression remain unknown. Here we used mouse fibroblasts as a model to assess the signaling properties of Rac1b. We show that, in contrast to Rac1, expression of wild-type Rac1b is sufficient to stimulate cyclin D1 accumulation and G1/S progression in these cells. Moreover, expression of wild-type Rac1b, but not of wild-type Rac1, dramatically increased cell survival in the presence of only minimal growth stimuli. Both cellular responses were blocked by the NF-kappaB super-repressor IkappaBalpha(A32A36). Active Rac1b induced the phosphorylation and membrane translocation of IkappaBalpha, a prerequisite for the activation of NF-kappaB. These data demonstrate that Rac1b is a highly active Rac1 variant that stimulates cell cycle progression and cell survival in pathways involving NF-kappaB.  相似文献   

15.
We have shown that cytokine-like 1 (Cytl1) is a novel autocrine regulatory factor that regulates chondrogenesis of mouse mesenchymal cells (Kim, J. S., Ryoo, Z. Y., and Chun, J. S. (2007) J. Biol. Chem. 282, 29359-29367). In this previous work, we found that Cytl1 expression was very low in mesenchymal cells, increased dramatically during chondrogenesis, and decreased during hypertrophic maturation, both in vivo and in vitro. Moreover, exogenous addition or ectopic expression of Cytl1 caused chondrogenic differentiation of mouse limb bud mesenchymal cells. In the current study, we generated a Cytl1 knock-out (Cytl1(-/-)) mouse to investigate the in vivo role of Cytl1. Deletion of the Cytl1 gene did not affect chondrogenesis or cartilage development. Cytl1(-/-) mice also showed normal endochondral ossification and long bone development. Additionally, ultrastructural features of articular cartilage, such as matrix organization and chondrocyte morphology, were similar in wild-type and Cytl1(-/-) mice. However, Cytl1(-/-) mice were more sensitive to osteoarthritic (OA) cartilage destruction. Compared with wild-type littermates, Cytl1(-/-) mice showed more severe OA cartilage destruction upon destabilization of the medial meniscus of mouse knee joints. In addition, expression levels of Cytl1 were markedly decreased in OA cartilage of humans and experimental mice. Taken together, our results suggest that, rather than regulating cartilage and bone development, Cytl1 is required for the maintenance of cartilage homeostasis, and loss of Cytl1 function is associated with experimental OA cartilage destruction in mice.  相似文献   

16.
17.
Recruitment of circulating monocytes into the vasculature and release of reactive oxygen species (ROS) promote atherogenesis. Rac1-GTPase is an essential component of the superoxide-producing NADPH-oxidase complex. Estrogens inhibit production of vascular reactive oxygen species.Angiotensin II as well as overexpression of the constitutively active mutant RacL61 increased ROS production in monocytes. AngII-mediated ROS release was completely inhibited by overexpression of the dominant negative mutant RacN17 or treatment with 17β-estradiol. 17β-Estradiol reduced Rac1-expression concentration- and time-dependently and decreased basal, as well as AngII-induced Rac1 activity. The effects of 17β-estradiol were receptor-mediated. In vivo, down-regulation of Rac1 by 17β-estradiol was observed in human mononuclear cells of women with elevated 17β-estradiol levels after controlled ovarian hyperstimulation.In summary, the data show that down-regulation of Rac1-GTPase contributes to the inhibition of angiotensin II-mediated superoxide release by 17β-estradiol in monocytes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号