首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apolipoprotein E (apoE) produced by macrophages in the arterial wall protects against atherosclerosis, but the regulation of its secretion by these cells is poorly understood. Here we investigated the contribution of the adenosine triphosphate binding cassette transporters ABCA1 and ABC8 to the secretion of apoE from either primary human monocyte-derived macrophages (HMDM) or human THP1 macrophages. During incubations of up to 6 h, apoE secretion from both THP1 macrophages and HMDM was stimulated by 8-Br-cAMP, which activates ABCA1 expression. The putative ABCA1 inhibitor glyburide and antisense oligonucleotides directed against ABCA1 mRNA significantly reduced apoE secretion from THP1 macrophages and HMDM. Antisense oligonucleotides directed against ABC8 mRNA also inhibited apoE secretion, although this inhibition was less pronounced and consistent than in the case of ABCA1. ApoE secretion from HMDM of ABCA1-deficient patients with Tangier disease was also decreased. ApoE mRNA expression was not affected by inhibition of ABCA1 or ABC8 in normal HMDM or the lack of functional ABCA1 in HMDM from Tangier disease patients. Inhibition of ABCA1 in HMDM prevented the occurrence of anti-apoE-immunoreactive granular structures in the plasma membrane. We conclude that ABCA1 and, to a lesser extent, ABC8 both promote secretion of apoE from human macrophages.  相似文献   

2.
In vitro monocyte-derived macrophages (MDMac) and synovial fluid macrophages from inflamed joints differ from monocytes in their responses to interleukin 4 (IL-4). While IL-4 can suppress LPS-induced interleukin beta (IL-beta) and tumour necrosis factor alpha (TNF-alpha) production by monocytes, IL-4 can suppress LPS-induced IL-1 beta, but not TNFalpha production by the more differentiated cells. Recently we reported a correlation between the ability of IL-4 to regulate TNFalpha production by monocytes and the expression of the IL-4 receptor gamma chain or gamma common (gamma c chain). Like MDMac, interferon alpha (IFNalpha)-treated monocytes expressed less IL-4 receptor gamma c chain, reduced levels of IL-4-activated STAT6 and IL-4 could not suppress LPS-induced TNFalpha production. In addition, like monocytes and MDMac, IFNalpha-treated monocytes expressed normal levels of the IL-4 receptor alpha chain and IL-4 significantly suppressed LPS-induced IL-1 beta production. With addition of IFNalpha-neutralizing antibodies, the ability of IL-4 to suppress LPS-induced TNFalpha production with prolonged monocyte culture was restored. Detection of IFNalpha in synovial fluids from inflamed joints further implicates IFNalpha in the inability of IL-4 to suppress TNFalpha production by synovial fluid macrophages. This study identifies a mechanism for the differential expression of gamma c and varied responses to IL-4 by human monocytes compared with MDMac.  相似文献   

3.
High-density lipoproteins (HDLs) play a role in transporting cholesterol from peripheral tissues to the liver for elimination from the body. Two hallmarks of cardiovascular disease are the presence of sterol-laden macrophages in the artery wall and reduced plasma HDL levels. A cell-membrane protein called ABCA1 mediates the secretion of excess cholesterol from cells into the HDL metabolic pathway. Mutations in ABCA1 cause Tangier disease, a severe HDL deficiency syndrome characterized by accumulation of cholesterol in tissue macrophages and prevalent atherosclerosis. Because of its ability to deplete macrophages of cholesterol and to raise plasma HDL levels, ABCA1 has become a promising therapeutic target for preventing cardiovascular disease.  相似文献   

4.
Tangier disease is an inherited disorder that results in a deficiency in circulating levels of HDL. Although the disease is known to be caused by mutations in the ABCA1 gene, the mechanism by which lesions in the ABCA1 ATPase effect this outcome is not known. The inability of ABCA1 knockout mice (ABCA1-/-) to load cholesterol and phospholipids onto apoA1 led to a proposal that ABCA1 mediates the transbilayer externalization of phospholipids, an activity integral not only to the formation of HDL particles but also to another, distinct process: the recognition and clearance of apoptotic cells by macrophages. Expression of phosphatidylserine (PS) on the surface of both macrophages and their apoptotic targets is required for efficient engulfment of the apoptotic cells, and it has been proposed that ABCA1 is required for transbilayer externalization of PS to the surface of both cell types. To determine whether ABCA1 is responsible for any of the catalytic activities known to control transbilayer phospholipid movements, these activities were measured in cells from ABCA1-/- mice and from Tangier individuals as well as ABCA1-expressing HeLa cells. Phospholipid movements in either normal or apoptotic lymphocytes or in macrophages were not inhibited when cells from knockout and wildtype mice or immortalized cells from Tangier individuals vs normal individuals were compared. Exposure of PS on the surface of normal thymocytes, apoptotic thymocytes and elicited peritoneal macrophages from wildtype and knockout mice or B lymphocytes from normal and Tangier individuals, as measured by annexin V binding, was also unchanged. No evidence was found of ABCA1-stimulated active PS export, and spontaneous PS movement to the outer leaflet in the presence or absence of apoA1 was unaffected by the presence or absence of ABCA1. Normal or Tangier B lymphocytes and macrophages were also identical in their ability to serve as targets or phagocytes, respectively, in apoptotic cell clearance assays. No evidence was found to support the suggestion that ABCA1 is involved in transport to the macrophage cell surface of annexins I and II, known to enhance phagocytosis of apoptotic cells. These results show that mutations in ABCA1 do not measurably reduce the rate of transbilayer movements of phospholipids in either the engulfing macrophage or the apoptotic target, thus discounting catalysis of transbilayer movements of phospholipids as the mechanism by which ABCA1 facilitates loading of phospholipids and cholesterol onto apoA1.  相似文献   

5.
Tangier disease and ABCA1   总被引:29,自引:0,他引:29  
Tangier disease is an autosomal recessive genetic disorder characterized by a severe high-density lipoprotein (HDL) deficiency, sterol deposition in tissue macrophages, and prevalent atherosclerosis. Mutations in the ATP binding cassette transporter ABCA1 cause Tangier disease and other familial HDL deficiencies. ABCA1 controls a cellular pathway that secretes cholesterol and phospholipids to lipid-poor apolipoproteins. This implies that an inability of newly synthesized apolipoproteins to acquire cellular lipids by the ABCA1 pathway leads to their rapid degradation and an over-accumulation of cholesterol in macrophages. Thus, ABCA1 plays a critical role in modulating flux of tissue cholesterol and phospholipids into the reverse cholesterol transport pathway, making it an important therapeutic target for clearing excess cholesterol from macrophages and preventing atherosclerosis.  相似文献   

6.
7.
Genes encoding proteins with PYRIN/PAAD/DAPIN domains, a nucleotide binding fold (NACHT), and leucine rich repeats have recently been recognized as important mediators in autoimmune inflammatory disorders. Here we characterize the expression and function of a member of the PYRIN and NACHT domain (PAN) family, PAN1 (also known as NALP2 and PYPAF2). PAN1 protein expression is regulated by lipopolysaccharide (LPS) and interferons (IFNbeta and IFNgamma) in THP-1 macrophage cells. In gene transfection studies PAN1 manifests an inhibitory influence on NF-kappaB activation induced by various pro-inflammatory stimuli, including tumor necrosis factor TNFalpha and interleukin-1beta (IL-1beta). Gene transfer-mediated elevations in PAN1 protein also suppressed activation of IkappaB kinases induced by inflammatory cytokines. Conversely, reducing endogenous levels of PAN1 using small interfering RNA enhanced LPS-induced production of ICAM-1 (intercellular adhesion molecule 1), an NF-kappaB-dependent gene. We also show here that PAN1 binds via its PYRIN domain to ASC, an adapter protein involved in caspase-1 activation. This binding is disrupted by mutation of the alpha1 helix of ASC. In gene transfer experiments PAN1 enhances caspase-1 activation and IL-1beta secretion in collaboration with ASC. Conversely, reducing endogenous levels of PAN1 using small interfering RNA significantly reduced LPS-induced secretion of IL-1beta in monocytes. We propose that PAN1 functions as a modulator of the activation of NF-kappaB and pro-caspase-1 in macrophages.  相似文献   

8.
Lipid-poor apolipoproteins remove cellular cholesterol and phospholipids by an active transport pathway controlled by an ATP binding cassette transporter called ABCA1 (formerly ABC1). Mutations in ABCA1 cause Tangier disease, a severe HDL deficiency syndrome characterized by a rapid turnover of plasma apolipoprotein A-I, accumulation of sterol in tissue macrophages, and prevalent atherosclerosis. This implies that lipidation of apolipoprotein A-I by the ABCA1 pathway is required for generating HDL particles and clearing sterol from macrophages. Thus, the ABCA1 pathway has become an important therapeutic target for mobilizing excess cholesterol from tissue macrophages and protecting against atherosclerosis.  相似文献   

9.
10.
Macrophages play important roles in both lipid metabolism and innate immunity. We show here that macrophage ATP-binding cassette transporter A1 (ABCA1), a transporter known for its ability to promote apolipoprotein-dependent cholesterol efflux, also participates in the removal of an immunostimulatory bacterial lipid, lipopolysaccharide (LPS). Whereas monocytes require an exogenous lipoprotein acceptor to remove cell-associated LPS, macrophages released LPS in the absence of an exogenous acceptor by a mechanism that was driven, in part, by endogenous apolipoprotein E (apoE). Agents that increased ABCA1 expression increased LPS efflux from wild-type but not ABCA1-deficient macrophages. Preexposure of peritoneal macrophages to LPS for 24 h increased the expression of ABCA1 and increased LPS efflux with a requirement for exogenous apolipoproteins due to suppression of endogenous apoE production. In contrast, LPS preconditioning of ABCA1-deficient macrophages significantly decreased LPS efflux and led to prolonged retention of cell-surface LPS. Although the initial response to LPS was similar in wild-type and ABCA1-deficient macrophages, LPS-induced tolerance was greater and more prolonged in macrophages that lacked ABCA1. Our results define a new role for macrophage ABCA1 in removing cell-associated LPS and restoring normal macrophage responsiveness.  相似文献   

11.
12.
13.
Cytokines released from monocytes and macrophages are major mediators of inflammation. Heat shock significantly inhibits cytokine production from these cells. To investigate whether this inhibitory effect was mediated by heat-shock proteins (HSP), we transfected human peripheral blood monocyte-derived macrophages (MDM) with HSP-70 cDNA and examined Brucella melitensis lipopolysaccharide (LPS)-induced cytokine production in transfected cells. Over-expression of HSP-70 protein in the gene-transfected MDM had no effect on cytokine synthesis unless LPS was added. LPS-induced increases in production of tumour necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), IL-10 and IL-12 were significantly inhibited by the over-expression of HSP-70. However, over-expression of HSP-70 did not block LPS-induced increase in IL-6 synthesis. To further confirm these results, an antisense HSP-70 DNA oligomer was used to block HSP-70 synthesis. The inhibitory effect of HSP-70 on LPS-induced cytokine production in gene- transfected cells was completely reversed after treatment of cells with 5 microM antisense HSP-70. The same concentration of antisense HSP-70 also partially reversed heat-shock-induced inhibition of LPS-stimulated cytokine production. These results suggest that HSP-70 is involved in the regulation of LPS-induced cytokine production and that this family of proteins plays a role in mitigating adverse effects of endotoxin during infection or other pathological stresses.  相似文献   

14.
The potassium ionophore nigericin induces cell death and promotes the maturation and release of IL-1beta in lipopolysaccharide (LPS)-primed monocytes and macrophages, the latter depending on caspase-1 activation by an unknown mechanism. Here, we investigate the pathway that triggers cell death and activates caspase-1. We show that without LPS priming, nigericin alone triggered caspase-1 activation and IL-18 generation in THP-1 monocytic cells. Simultaneously, nigericin induced caspase-1-independent necrotic cell death, which was blocked by the cathepsin B inhibitor CA-074-Me and other cathepsin inhibitors. Cathepsin B activation after nigericin treatment was determined biochemically and corroborated by rapid lysosomal leakage and translocation of cathepsin B to the cytoplasm. IL-18 maturation was prevented by both caspase-1 and cathepsin B inhibitors in THP-1 cells, primary mouse macrophages and human blood monocytes. Moreover, IL-18 generation was reduced in THP-1 cells stably transformed either with cystatin A (an endogenous cathepsin inhibitor) or antisense cathepsin B cDNA. Collectively, our study establishes a critical role for cathepsin B in nigericin-induced caspase-1-dependent IL-18 maturation and caspase-1-independent necrosis.  相似文献   

15.
16.
Cholesterol-laden monocyte-derived macrophages are phagocytic cells characteristic of early and advanced atherosclerotic lesions. Interleukin-6 (IL-6) is a macrophage secretory product that is abundantly expressed in atherosclerotic plaques but whose precise role in atherogenesis is unclear. The capacity of macrophages to clear apoptotic cells, through the efferocytosis mechanism, as well as to reduce cellular cholesterol accumulation contributes to prevent plaque progression and instability. By virtue of its capacity to promote cellular cholesterol efflux from phagocyte-macrophages, ABCA1 was reported to reduce atherosclerosis. We demonstrated that lipid loading in human macrophages was accompanied by a strong increase of IL-6 secretion. Interestingly, IL-6 markedly induced ABCA1 expression and enhanced ABCA1-mediated cholesterol efflux from human macrophages to apoAI. Stimulation of ABCA1-mediated cholesterol efflux by IL-6 was, however, abolished by selective inhibition of the Jak-2/Stat3 signaling pathway. In addition, we observed that the expression of molecules described to promote efferocytosis, i.e. c-mer proto-oncogene-tyrosine kinase, thrombospondin-1, and transglutaminase 2, was significantly induced in human macrophages upon treatment with IL-6. Consistent with these findings, IL-6 enhanced the capacity of human macrophages to phagocytose apoptotic cells; moreover, we observed that IL-6 stimulates the ABCA1-mediated efflux of cholesterol derived from the ingestion of free cholesterol-loaded apoptotic macrophages. Finally, the treatment of human macrophages with IL-6 led to the establishment of an anti-inflammatory cytokine profile, characterized by an increased secretion of IL-4 and IL-10 together with a decrease of that of IL-1β. Taken together, our results indicate that IL-6 favors the elimination of excess cholesterol in human macrophages and phagocytes by stimulation of ABCA1-mediated cellular free cholesterol efflux and attenuates the macrophage proinflammatory phenotype. Thus, high amounts of IL-6 secreted by lipid laden human macrophages may constitute a protective response from macrophages to prevent accumulation of cytotoxic-free cholesterol. Such a cellular recycling of free cholesterol may contribute to reduce both foam cell formation and the accumulation of apoptotic bodies as well as intraplaque inflammation in atherosclerotic lesions.  相似文献   

17.
ProIL-1 beta processing by IL-1 beta-converting enzyme (ICE) and the subsequent release of mature IL-1 beta are highly regulated events in the monocyte/macrophage response to pathogens. This process occurs in a controlled way through the activation of the constitutively expressed 45-kDa ICE precursor (proICE). To characterize the signaling pathways involved in ICE regulation in human monocytes/macrophages, we analyzed ICE activation in the presence of specific inhibitors of classic signaling pathways. Although LPS-induced ICE activity was not significantly affected by interruption of extracellular signal-regulated kinase, p38 kinase, or phosphoinositol 3-kinase, Janus kinase 3 (JAK3) inhibition produced a significant dose-dependent enhancement of LPS-induced ICE activity. Support for the inhibitory role of JAK3 was shown by the fact that IL-4 (which uses JAK1 and JAK3 signaling) suppressed LPS-induced ICE activity and by the finding that JAK3 knockout macrophages have increased LPS-induced ICE activation. To understand how JAK3 down-regulates LPS-induced ICE activity in monocytes, we hypothesized that JAK3 signaling enhances IL-10 production. In support of this model we show that LPS-induced IL-10 expression was synchronous with ICE deactivation, IL-4 induced the release of IL-10, exogenous IL-10 suppressed LPS-induced ICE activity, a neutralizing IL-10 Ab increased LPS-induced ICE activity, and, finally, JAK3 knockout macrophages displayed significantly reduced LPS-induced IL-10 production. These findings support a model in which JAK3 signaling enhances IL-10 production leading to down-regulation of ICE activation and suppression of IL-1 beta processing and release.  相似文献   

18.
Alpha-tocopherol (alpha-TOH) is associated with plasma lipoproteins and accumulates in cell membranes throughout the body, suggesting that lipoproteins play a role in transporting alpha-TOH between tissues. Here we show that secretion of alpha-TOH from cultured cells is mediated in part by ABCA1, an ATP-binding cassette protein that transports cellular cholesterol and phospholipids to lipid-poor high density lipoprotein (HDL) apolipoproteins such as apoA-I. Treatment of human fibroblasts and murine RAW264 macrophages with cholesterol and/or 8-bromo-cyclic AMP, which induces ABCA1 expression, enhanced apoA-I-mediated alpha-TOH efflux. ApoA-I lacked the ability to remove alpha-TOH from Tangier disease fibroblasts that have a nonfunctional ABCA1. BHK cells that lack an active ABCA1 pathway markedly increased secretion of alpha-TOH to apoA-I when forced to express ABCA1. ABCA1 also mediated a fraction of the alpha-TOH efflux promoted by lipid-containing HDL particles, indicating that HDL promotes alpha-TOH efflux by both ABCA1-dependent and -independent processes. Exposing apoA-I to ABCA1-expressing cells did not enhance its ability to remove alpha-TOH from cells lacking ABCA1, consistent with this transporter participating directly in the translocation of alpha-TOH to apolipoproteins. These studies provide evidence that ABCA1 mediates secretion of cellular alpha-TOH into the HDL metabolic pathway, a process that may facilitate vitamin transport between tissues and influence lipid oxidation.  相似文献   

19.
We have performed pulse-chase experiments to investigate the secretion and processing of interleukin 1 (IL-1) by human peripheral blood monocytes. Polyclonal antisera generated against either recombinant IL-1 alpha (p15) or IL-1 beta (p17) could distinguish the two isoelectric forms in lysates and supernatants of lipopolysaccharide-activated monocytes. In agreement with previous results, no processed IL-1 (alpha or beta) is detected in cell lysates. Both the 31-kDa precursor and 17-kDa mature forms of IL-1 were present, however, in the culture media indicating that processing is not required for secretion. The relative amounts of the secreted 31- and 17-kDa forms of IL-1 remain constant with time throughout each experiment; in addition, 31-kDa IL-1 added to monocyte cultures is not processed to the mature 17-kDa form. Precursor IL-1 beta is however, processed to 17 kDa by monocyte extracts. Therefore, the maturation and secretion of IL-1 are intimately coordinated processes. The kinetics of IL-1 secretion are unique in comparison with other secreted proteins; release of both IL-1 alpha and IL-1 beta is delayed following synthesis, and large pools of precursor IL-1 accumulate intracellularly. The intracellular half-lives of IL-1 alpha and IL-1 beta are 15 and 2.5 h, respectively. This discrepancy in half-lives is a reflection of the different kinetics with which IL-1 alpha and IL-1 beta are secreted. IL-1 beta is released continuously beginning 2 h after synthesis, whereas the secretion of IL-1 alpha is delayed for an additional 10 h. The distinct kinetics of secretion demonstrated for IL-1 alpha and IL-1 beta suggest that the release of each pI species of IL-1 is controlled by a selective mechanism(s).  相似文献   

20.
IL-32 is a newly described cytokine in the human found to be an in vitro inducer of tumor necrosis factor alpha (TNFalpha). We examined the in vivo relationship between IL-32 and TNFalpha, and the pathologic role of IL-32 in the TNFalpha-related diseases - arthritis and colitis. We demonstrated by quantitative PCR assay that IL-32 mRNA was expressed in the lymphoid tissues, and in stimulated peripheral T cells, monocytes, and B cells. Activated T cells were important for IL-32 mRNA expression in monocytes and B cells. Interestingly, TNFalpha reciprocally induced IL-32 mRNA expression in T cells, monocyte-derived dendritic cells, and synovial fibroblasts. Moreover, IL-32 mRNA expression was prominent in the synovial tissues of rheumatoid arthritis patients, especially in synovial-infiltrated lymphocytes by in situ hybridization. To examine the in vivo relationship of IL-32 and TNFalpha, we prepared an overexpression model mouse of human IL-32beta (BM-hIL-32) by bone marrow transplantation. Splenocytes of BM-hIL-32 mice showed increased expression and secretion of TNFalpha, IL-1beta, and IL-6 especially in response to lipopolysaccharide stimulation. Moreover, serum TNFalpha concentration showed a clear increase in BM-hIL-32 mice. Cell-sorting analysis of splenocytes showed that the expression of TNFalpha was increased in resting F4/80+ macrophages, and the expression of TNFalpha, IL-1beta and IL-6 was increased in lipopolysaccharide-stimulated F4/80+ macrophages and CD11c+ dendritic cells. In fact, BM-hIL-32 mice showed exacerbation of collagen-antibody-induced arthritis and trinitrobenzen sulfonic acid-induced colitis. In addition, the transfer of hIL-32beta-producing CD4+ T cells significantly exacerbated collagen-induced arthritis, and a TNFalpha blockade cancelled the exacerbating effects of hIL-32beta. We therefore conclude that IL-32 is closely associated with TNFalpha, and contributes to the exacerbation of TNFalpha-related inflammatory arthritis and colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号