首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In eukaryotic organisms, initiation of mRNA turnover is controlled by progressive shortening of the poly-A tail, a process involving the mega-Dalton Ccr4-Not complex and its two associated 3′-5′ exonucleases, Ccr4p and Pop2p (Caf1p). RNA degradation by the 3′-5′ DEDDh exonuclease, Pop2p, is governed by the classical two metal ion mechanism traditionally assumed to be dependent on Mg2+ ions bound in the active site. Here, we show biochemically and structurally that fission yeast (Schizosaccharomyces pombe) Pop2p prefers Mn2+ and Zn2+ over Mg2+ at the concentrations of the ions found inside cells and that the identity of the ions in the active site affects the activity of the enzyme. Ion replacement experiments further suggest that mRNA deadenylation could be subtly regulated by local Zn2+ levels in the cell. Finally, we use site-directed mutagenesis to propose a mechanistic model for the basis of the preference for poly-A sequences exhibited by the Pop2p-type deadenylases as well as their distributive enzymatic behavior.  相似文献   

2.
Thore S  Mauxion F  Séraphin B  Suck D 《EMBO reports》2003,4(12):1150-1155
In Saccharomyces cerevisiae, a large complex, known as the Ccr4–Not complex, containing two nucleases, is responsible for mRNA deadenylation. One of these nucleases is called Pop2 and has been identified by similarity with PARN, a human poly(A) nuclease. Here, we present the crystal structure of the nuclease domain of Pop2 at 2.3 Å resolution. The domain has the fold of the DnaQ family and represents the first structure of an RNase from the DEDD superfamily. Despite the presence of two non-canonical residues in the active site, the domain displays RNase activity on a broad range of RNA substrates. Site-directed mutagenesis of active-site residues demonstrates the intrinsic ability of the Pop2 RNase D domain to digest RNA. This first structure of a nuclease involved in the 3′–5′ deadenylation of mRNA in yeast provides information for the understanding of the mechanism by which the Ccr4–Not complex achieves its functions.  相似文献   

3.
The nuclease activity of FEN-1 is essential for both DNA replication and repair. Intermediate DNA products formed during these processes possess a variety of structures and termini. We have previously demonstrated that the 5′→3′ exonuclease activity of the Schizosaccharomyces pombe FEN-1 protein Rad2p requires a 5′-phosphoryl moiety to efficiently degrade a nick-containing substrate in a reconstituted alternative excision repair system. Here we report the effect of different 5′-terminal moieties of a variety of DNA substrates on Rad2p activity. We also show that Rad2p possesses a 5′→3′ single-stranded exonuclease activity, similar to Saccharomyces cerevisiae Rad27p and phage T5 5′→3′ exonuclease (also a FEN-1 homolog). FEN-1 nucleases have been associated with the base excision repair pathway, specifically processing cleaved abasic sites. Because several enzymes cleave abasic sites through different mechanisms resulting in different 5′-termini, we investigated the ability of Rad2p to process several different types of cleaved abasic sites. With varying efficiency, Rad2p degrades the products of an abasic site cleaved by Escherichia coli endonuclease III and endonuclease IV (prototype AP endonucleases) and S.pombe Uve1p. These results provide important insights into the roles of Rad2p in DNA repair processes in S.pombe.  相似文献   

4.
Deadenylation is the first and rate-limiting step during turnover of mRNAs in eukaryotes. In the yeast, Saccharomyces cerevisiae, two distinct 3'-5' exonucleases, Pop2p and Ccr4p, have been identified within the Ccr4-NOT deadenylase complex, belonging to the DEDD and Exonuclease-Endonuclease-Phosphatase (EEP) families, respectively. Ngl3p has been identified as a new member of the EEP family of exonucleases based on sequence homology, but its activity and biological roles are presently unknown. Here, we show using in vitro deadenylation assays on defined RNA species mimicking poly-A containing mRNAs that yeast Ngl3p is a functional 3'-5' exonuclease most active at slightly acidic conditions. We further show that the enzyme depends on divalent metal ions for activity and possesses specificity towards poly-A RNA similar to what has been observed for cellular deadenylases. The results suggest that Ngl3p is naturally involved in processing of poly-adenylated RNA and provide insights into the mechanistic variations observed among the redundant set of EEP enzymes found in yeast and higher eukaryotes.  相似文献   

5.
The present results demonstrate that pyridoxal, pyridoxal 5′-phosphate (PLP) and pyridoxal 5′-diphospho-5′-adenosine (PLP-AMP) inhibit Candida guilliermondii and human DNA topoisomerases I in forming an aldimine with the ε-amino group of an active site lysine. PLP acts as a competitive inhibitor of C.guilliermondii topoisomerase I (Ki = 40 μM) that blocks the cleavable complex formation. Chemical reduction of PLP-treated enzyme reveals incorporation of 1 mol of PLP per mol of protein. The limited trypsic proteolysis releases a 17 residue peptide bearing a lysine-bound PLP (KPPNTVIFDFLGK*DSIR). Targeted lysine (K*) in C.guilliermondii topoisomerase I corresponds to that found in topoisomerase I of Homo sapiens (K532), Candida albicans (K468), Saccharomyces cerevisiae (K458) and Schizosaccharomyces pombe (K505). In the human enzyme, K532, belonging to the active site acts as a general acid catalyst and is therefore essential for activity. The spatial orientation of K532–PLP within the active site was approached by molecular modeling using available crystallographic data. The PLP moiety was found at close proximity of several active residues. PLP could be involved in the cellular control of topoisomerases IB. It constitutes an efficient tool to explore topoisomerase IB dynamics during catalysis and is also a lead for new drugs that trap the lysine general acid.  相似文献   

6.
The archaeal box C/D sRNP, the enzyme responsible for 2′-O-methylation of rRNA and tRNA, possesses a nearly perfect axis of symmetry and bipartite structure. This RNP contains two platforms for the assembly of protein factors, the C/D and C′/D′ motifs, acting in conjunction with two guide sequences to direct methylation of a specific 2′-hydroxyl group in a target RNA. While this suggests that a functional asymmetric single-site complex complete with guide sequence and a single box C/D motif should be possible, previous work has demonstrated such constructs are not viable. To understand the basis for a bipartite RNP, we have designed and assayed the activity and specificity of a series of synthetic RNPs that represent a systematic reduction of the wild-type RNP to a fully single-site enzyme. This reduced RNP is active and exhibits all of the characteristics of wild-type box C/D RNPs except it is nonspecific with respect to the site of 2′-O-methylation. Our results demonstrate that protein–protein crosstalk through Nop5p dimerization is not required, but that architecture plays a crucial role in directing methylation activity with both C/D and C′/D′ motifs being required for specificity.  相似文献   

7.
Aminoglycoside-2′′-phosphotransferase-IIa [APH(2′′)-IIa] is one of a number of homologous bacterial enzymes responsible for the deactivation of the aminoglycoside family of antibiotics and is thus a major component in bacterial resistance to these compounds. APH(2′′)-IIa produces resistance to several clinically important aminoglycosides (including kanamycin and gentamicin) in both gram-positive and gram-negative bacteria, most notably in Enterococcus species. We have determined the structures of two complexes of APH(2′′)-IIa, the binary gentamicin complex and a ternary complex containing adenosine-5′-(β,γ-methylene)triphosphate (AMPPCP) and streptomycin. This is the first crystal structure of a member of the APH(2′′) family of aminoglycoside phosphotransferases. The structure of the gentamicin-APH(2′′)-IIa complex was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and was refined to a crystallographic R factor of 0.210 (Rfree, 0.271) at a resolution of 2.5 Å. The structure of the AMPPCP-streptomycin complex was solved by molecular replacement using the gentamicin-APH(2′′)-IIa complex as the starting model. The enzyme has a two-domain structure with the substrate binding site located in a cleft in the C-terminal domain. Gentamicin binding is facilitated by a number of conserved acidic residues lining the binding cleft, with the A and B rings of the substrate forming the majority of the interactions. The inhibitor streptomycin, although binding in the same pocket as gentamicin, is orientated such that no potential phosphorylation sites are adjacent to the catalytic aspartate residue. The binding of gentamicin and streptomycin provides structural insights into the substrate selectivity of the APH(2′′) subfamily of aminoglycoside phosphotransferases, specifically, the selectivity between the 4,6-disubstituted and the 4,5-disubstituted aminoglycosides.The emergence of bacteria resistant to several important classes of antibiotics has become a major clinical problem over the last few years. Almost every antibacterial compound in clinical use today has associated examples of resistant bacterial isolates (39), including life-threatening strains of Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and various enterococci. The latter are among the most common antibiotic-resistance bacteria isolated from patients with nosocomial infections in the United States today. The synergistic use of either ampicillin or vancomycin with an aminoglycoside, such as kanamycin or gentamicin, has long been the optimal therapy for serious enterococcal infections; however, many previously susceptible enterococcal strains have since acquired resistance to the aminoglycosides. The mechanisms of resistance are many and varied, although only three are readily understood: (i) mutation of the ribosomal target, (ii) reduced permeability and/or increased efflux of the drug, and (iii) enzymatic deactivation of the drug. Resistance to the aminoglycosides through enzymatic deactivation, although seemingly straightforward, is in reality a complex problem involving three different classes of enzyme. These enzyme classes are the ATP-dependent phosphotransferases (APH) and adenyltransferases (ANT), and the acetyl coenzyme A-dependent N-acetyltransferases (AAC). This area of research has been extensively reviewed in the past few years (2, 4, 13, 29, 39, 47, 52, 53).Originally isolated from soil bacteria, including various species of Streptomyces and Micromonospora (20), the aminoglycosides are a family of potent, broad-spectrum antibiotics that includes clinically relevant drugs such as gentamicin, neomycin, amikacin, kanamycin, and streptomycin. The structures of these compounds, with the exception of that of streptomycin, are all similar, consisting of a central aminocyclitol ring (the B ring) with two or three substituted aminoglycan rings (A, C, and in some cases, D) attached at either the 4 and 5 positions (the 4,5-disubstituted aminoglycosides, which include neomycin and lividomycin) or the 4 and 6 positions (the 4,6-disubstituted aminoglycosides, such as gentamicin and kanamycin). Streptomycin, a competitive inhibitor of aminoglycoside-2′′-phosphotransferase-IIa [APH(2′′)-IIa] (45), is an atypical aminoglycoside that does not fall into either the 4,5-disubstituted or 4,6-disubstituted classes. It has a modified ribose (ring B) attached to position 4 on a 1,3-diguanidinium-substituted aminocyclitol ring (ring A) with no substituent at the 5 or 6 position. The structures of gentamicin, kanamycin, neomycin, and streptomycin are shown in Fig. Fig.1.1. The aminoglycosides are targeted to the 16S rRNA of the bacterial 30S ribosomal subunit, where they selectively bind to the decoding aminoacyl (A) site (31, 51) and stabilize the conformation of the tRNA bound to a cognate mRNA codon. This decreases the dissociation rate of aminoacyl-tRNA and promotes miscoding (28). The structures of a number of the aminoglycosides with either the 30S subunit or oligonucleotides containing minimal A sites are known (51).Open in a separate windowFIG. 1.Structures of gentamicin, kanamycin, streptomycin, and neomycin. Gentamicin and kanamycin are classified as 4,6-disubstituted aminoglycosides, whereas neomycin is an example of a 4,5-disubstituted compound. The three structural variants which comprise gentamicin C are indicated. Amikacin is similar to kanamycin, although the substituent on the N1 amine is a 4-amino-2-hydroxy-1-oxobutyl group. Taken together, the A and B rings of aminoglycosides, such as gentamicin, kanamycin, and neomycin, are commonly known as the neamine moiety.The enzymes which deactivate the aminoglycosides are named according to the reaction they catalyze and the site on the aminoglycoside at which they act. The APH(2′′) enzymes, which give rise to high-level resistance to gentamicin in enterococci, phosphorylate gentamicin and kanamycin at the 2′′-hydroxyl group of the C ring (Fig. (Fig.1).1). The APH(3′) enzymes, another major subfamily of the phosphotransferases, phosphorylate kanamycin and neomycin at the 3′-hydroxyl on the A ring but cannot deactivate gentamicin, since it has no corresponding 3′-hydroxyl. The individual members of each family can normally bind only a subset of the available drugs, and this difference in drug specificity is known as the resistance profile, designated with a roman numeral and, in some cases, a letter identifying a specific gene. The first APH(2′′) enzyme discovered for enterococci was the bifunctional AAC(6′)-Ie-APH(2′′)-Ia enzyme, which possesses both 6′-acetylating and 2′′-phosphorylating activities (17, 33). Enterococci with the corresponding gene show resistance to almost all clinically relevant aminoglycosides (38). Four additional APH(2′′) enzymes have since been isolated for Enterococcus spp.; they are designated APH(2′′)-Ib (27), APH(2′′)-Ic (11), APH(2′′)-Id (46), and APH(2′′)-Ie (10) and were initially classified as genetic variants of an APH(2′′)-I-type enzyme. Recently, APH(2′′)-Ib, APH(2′′)-Ic, and APH(2′′)-Id have been reclassified as distinct enzymes with different resistance profiles and, more importantly, different nucleotide specificities, such that they are now named APH(2′′)-IIa, APH(2′′)-IIIa, and APH(2′′)-IVa, respectively (44). APH(2′′)-Ie was not included in the latter study, but based upon the very high sequence similarity with APH(2′′)-IVa (93%) (see Table S1 in the supplemental material), it is possible that it is a genetic variant of APH(2′′)-IVa.Structural details are currently known for only two members of the APH(3′) family, APH(3′)-IIIa (5, 18, 23) and APH(3′)-IIa (37). These enzymes share a two-domain structure similar to the catalytic domains of the eukaryotic Ser/Thr and Tyr protein kinases. Moreover, the phosphotransferases and kinases share several important sequence motifs related to nucleotide binding and phosphoryl transfer, most notably the catalytic loop (HXDXXXXN) and the activation segment (GXIDXG), where X is any amino acid. Not surprisingly, the catalytic mechanisms of the phosphotransferases and the kinases are identical, involving the nucleophilic attack by the target hydroxyl on the γ phosphate of ATP, facilitated by a conserved aspartate residue from the catalytic loop (29, 54). A comparison of the known APH(2′′) and APH(3′) sequences shows that the two families of phosphotransferases share these kinase-like motifs, and there appears to be some partial conservation of acidic residues in the substrate binding region. It has been suggested that their structures may be similar (37). Here, we report the first structure of an APH(2′′) enzyme, APH(2′′)-IIa as the binary complex with the preferred substrate gentamicin and the ternary complex with the nonhydrolyzable ATP analog adenosine-5′-(β,γ-methylene)triphosphate (AMPPCP) and the competitive inhibitor streptomycin.  相似文献   

8.
The alginate-assimilating bacterium, Sphingomonas sp. strain A1, degrades the polysaccharides to monosaccharides through four alginate lyase reactions. The resultant monosaccharide, which is nonenzymatically converted to 4-deoxy-l-erythro-5-hexoseulose uronate (DEH), is further metabolized to 2-keto-3-deoxy-d-gluconate by NADPH-dependent reductase A1-R in the short-chain dehydrogenase/reductase (SDR) family. A1-R-deficient cells produced another DEH reductase, designated A1-R′, with a preference for NADH. Here, we show the identification of a novel NADH-dependent DEH reductase A1-R′ in strain A1, structural determination of A1-R′ by x-ray crystallography, and structure-based conversion of a coenzyme requirement in SDR enzymes, A1-R and A1-R′. A1-R′ was purified from strain A1 cells and enzymatically characterized. Except for the coenzyme requirement, there was no significant difference in enzyme characteristics between A1-R and A1-R′. Crystal structures of A1-R′ and A1-R′·NAD+ complex were determined at 1.8 and 2.7 Å resolutions, respectively. Because of a 64% sequence identity, overall structures of A1-R′ and A1-R were similar, although a difference in the coenzyme-binding site (particularly the nucleoside ribose 2′ region) was observed. Distinct from A1-R, A1-R′ included a negatively charged, shallower binding site. These differences were caused by amino acid residues on the two loops around the site. The A1-R′ mutant with the two A1-R-typed loops maintained potent enzyme activity with specificity for NADPH rather than NADH, demonstrating that the two loops determine the coenzyme requirement, and loop exchange is a promising method for conversion of coenzyme requirement in the SDR family.  相似文献   

9.
Many eukaryotic and viral mRNAs, in which the first transcribed nucleotide is an adenosine, are decorated with a cap-1 structure, 7MeG5′-ppp5′-A2′OMe. The positive-sense RNA genomes of flaviviruses (Dengue, West Nile virus) for example show strict conservation of the adenosine. We set out to produce GpppA- and 7MeGpppA-capped RNA oligonucleotides for non-radioactive mRNA cap methyltransferase assays and, in perspective, for studies of enzyme specificity in relation to substrate length as well as for co-crystallization studies. This study reports the use of a bacteriophage T7 DNA primase fragment to synthesize GpppACn and 7MeGpppACn (1≤n≤9) in a one-step enzymatic reaction, followed by direct on-line cleaning HPLC purification. Optimization studies show that yields could be modulated by DNA template, enzyme and substrate concentration adjustments and longer reaction times. Large-scale synthesis rendered pure (in average 99%) products (1≤n≤7) in quantities of up to 100nmol starting from 200nmol cap analog. The capped RNA oligonucleotides were efficient substrates of Dengue virus (nucleoside-2′-O-)-methyltransferase, and human (guanine-N7)-methyltransferase. Methyltransfer reactions were monitored by a non-radioactive, quantitative HPLC assay. Additionally, the produced capped RNAs may serve in biochemical, inhibition and structural studies involving a variety of eukaryotic and viral methyltransferases and guanylyltransferases.  相似文献   

10.
Cyclic GMP-AMPs (cGAMPs) are new members of the cyclic dinucleotide family of second messenger signaling molecules identified in both bacteria and mammalian cells. A recent study by Gao et al. published in Cell Research has identified and characterized three 3′3′-cGAMP-specific phosphodiesterases (termed as V-cGAP1/2/3) in V. cholerae, thereby providing mechanistic insights into the function of these enzymes that degrade cGAMPs.Despite their indispensable roles in the composition of DNA and RNA, as well as serving as energy sources, nucleotides are also well known as crucial signaling molecules in all domains of life. Cyclic dinucleotides (CDNs) represent an important and growing family of second messengers, which have been previously recognized as key modulators governing a variety of cellular activities in bacteria, and more recently, in mammalian cells. c-di-GMP and c-di-AMP, the first two members of the CDN family, have been implicated in central bacterial processes, and likely act as universal bacterial secondary messengers1,2. The latest addition to the bacterial CDN family is 3′3′-cGAMP, a hybrid molecule that is synthesized from ATP and GTP by DncV (a cyclase from V. cholerae) and shown to promote intestinal colonization of V. cholerae by downregulating chemotaxis3. Predicted homologs of DncV are present in many other bacterial species3, indicating that 3′3′-cGAMP may also regulate a wide range of cellular functions, similar to c-di-GMP and c-di-AMP. The research on CDNs as second messengers reached new heights following the recent identification of 2′3′-cGAMP, a noncanonical CDN in mammalian cells containing mixed 2′,5′ (at GpA step) and 3′,5′ (at ApG step) linkages, which is synthesized by cGAMP synthase (cGAS) in response to the presence of DNA in the cytosol4,5,6. A remarkable set of new discoveries have revealed that all the CDNs described above are able to bind and activate STING, the central adaptor in the cytosolic DNA sensing pathway, thereby promoting the innate immune response in mammalian cells by inducing the expression of Type I interferon (IFN)7,8,9.Given their critical roles in a variety of important cellular processes, the cellular levels of CDNs have to be tightly controlled by the coordinated action of counteracting cyclases and degradation enzymes. To date, several phosphodiesterases (PDEs) have been found to hydrolyze c-di-GMP (EAL or HD-GYP domain-containing enzymes)1 and c-di-AMP (DHH-DHHA or HD domain-containing enzymes)2,10 (Figure 1). In addition, recent research reported that ENPP1 (ecto-nucleotide pyrophosphatase/phosphodiesterase) is the dominant 2′3′-cGAMP hydrolyzing enzyme in mammalian cells11 (Figure 1). A new study by Gao et al.12 has now identified the first three 3′3′-cGAMP-specific PDEs in V. cholerae and provided detailed insights into their enzymatic mechanisms.Open in a separate windowFigure 1Schematic representation of degradation enzymes identified for different cyclic dinucleotides and the related hydrolysis products. The various protein domains are highlighted by different shapes and colors. Note that the newly identified V-cGAPs belong to the HD-GYP domain-containing PDEs.There are a total of 36 potential PDE genes (containing EAL, HD-GYP or DHH domains) in the V. cholerae genome. To search for 3′3′-cGAMP-specific PDE(s), Gao et al.12 established an efficient and sensitive eukaryotic screening system by taking advantage of the ability of 3′3′-cGAMP to activate STING and induce type I IFN expression in mammalian cells. By overexpressing the 3′3′-cGAMP synthetase DncV together with the 36 potential PDEs in 293 cells, the authors could monitor IFN-β promoter activation to identify the PDE(s) that could degrade 3′3′-cGAMP. To exclude false-positives, Gao et al. further purified the PDEs that potentially target 3′3′-cGAMP based on the initial screening, and incubated these enzymes with chemically synthesized 3′3′-cGAMP. The treated 3′3′-cGAMP molecules were further assayed by either adding to PFO-permeabilized THP-1 cells to examine IRF3 phosphorylation levels or through loading on HPLC to monitor the generation of new products. As a result of the screening and validation, the authors successfully identified three HD-GYP domain-containing proteins that could degrade 3′3′-cGAMP, named VCA0681, VCA0210 and VCA0931 (designated as V-cGAP1, 2 and 3, respectively).To determine the substrate specificity of V-cGAPs, different cGAMP linkage isomers (3′3′-, 3′2′-, 2′3′-, and 2′2′-cGAMPs) were incubated with the purified V-cGAPs. The results of both IRF3 phosphorylation in THP-1 cells and HPLC assays clearly indicated that V-cGAPs only degrade 3′3′-cGAMP, but not other cGAMP linkage isomers. The 3′3′-cGAMP PDE activity of V-cGAPs was further confirmed by dosage- and time-dependent enzymatic assays. By using mutant proteins, the authors also confirmed that both the HD and GYP motifs within V-cGAPs are critical for PDE activity.Combining detailed HPLC analysis, mass spectrometry and enzymatic treatment, Gao et al. definitively established that 3′3′-cGAMP is first hydrolyzed by all three V-cGAPs to generate linear 5′-pApG, which is further hydrolyzed into 5′-ApG only by V-cGAP1. These results show that V-cGAP2 and V-cGAP3 have only PDE activity, while V-cGAP1 has both PDE and 5′-nucleotidase activities. The authors also found that V-cGAP1 has a much higher activity for linearization of 3′3′-cGAMP to 5′-pApG than V-cGAP2 and 3, with the later two V-cGAPs exhibiting similar kinetics of degradation.The cellular level of 3′3′-cGAMP has to be tightly regulated by a combination of counteracting synthesis and degradation enzymes. Since the expression level of DncV was found to be inducible by outside signals to enhance intestinal colonization and infectivity, it is very likely that the expression level of V-cGAPs will also be regulated by 3′3′-cGAMP production. Indeed, the authors proved that V-cGAP expression is greatly and readily enhanced after arabinose-induced DncV expression in a ΔdncV mutant V. cholerae strain, at both mRNA (by qRT-PCR) and protein (by immunoblot analysis) levels. To confirm the in vivo function of V-cGAPs, the authors performed both “chemotactic” and “infant mouse colonization competition” assays by using V-cGAP1/2/3 single-, double-, or triple-deletion V. cholerae strains. All the in vivo data clearly established that V-cGAPs counteract DncV function and exert a crucial role in regulating bacterial infectivity.The large amount of insightful data presented by Gao et al. has elucidated detailed information regarding the identification and characterization of 3′3′-cGAMP-specific phosphodiesterases, thereby providing valuable insights into our understanding of the regulatory mechanisms of cGAMP signaling in bacteria. Clearly, further structural work will be necessary to understand the intermolecular interactions between 3′3′-cGAMP and V-cGAPs, and provide insights into the mechanism by which V-cGAPs preferentially attack the phosphodiester bond at the GpA step.  相似文献   

11.
Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.  相似文献   

12.
Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on β-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of β-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2′:2,1′-β-D-Frup (diheterolevulosan II) and β-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2′:2,1′-β-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with β-D-Fruf and β-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).  相似文献   

13.
14.
15.
The catalytic activity of thrombin and other enzymes of the blood coagulation and complement cascades is enhanced significantly by binding of Na+ to a site >15 Å away from the catalytic residue S195, buried within the 180 and 220 loops that also contribute to the primary specificity of the enzyme. Rapid kinetics support a binding mechanism of conformational selection where the Na+-binding site is in equilibrium between open (N) and closed (N) forms and the cation binds selectively to the N form. Allosteric transduction of this binding step produces enhanced catalytic activity. Molecular details on how Na+ gains access to this site and communicates allosterically with the active site remain poorly defined. In this study, we show that the rate of the NN transition is strongly correlated with the analogous EE transition that governs the interaction of synthetic and physiologic substrates with the active site. This correlation supports the active site as the likely point of entry for Na+ to its binding site. Mutagenesis and structural data rule out an alternative path through the pore defined by the 180 and 220 loops. We suggest that the active site communicates allosterically with the Na+ site through a network of H-bonded water molecules that embeds the primary specificity pocket. Perturbation of the mobility of S195 and its H-bonding capabilities alters interaction with this network and influences the kinetics of Na+ binding and allosteric transduction. These findings have general mechanistic relevance for Na+-activated proteases and allosteric enzymes.  相似文献   

16.
Sphingomonas paucimobilis SYK-6 transforms 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA), a lignin-related biphenyl compound, to 5-carboxyvanillic acid via 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA) as an intermediate (15). The ring fission of OH-DDVA is an essential step in the DDVA degradative pathway. A 15-kb EcoRI fragment isolated from the cosmid library complemented the growth deficiency of a mutant on OH-DDVA. Subcloning and deletion analysis showed that a 1.4-kb DNA fragment included the gene responsible for the ring fission of OH-DDVA. An open reading frame encoding 334 amino acids was identified and designated ligZ. The deduced amino acid sequence of LigZ had 18 to 21% identity with the class III extradiol dioxygenase family, including the β subunit (LigB) of protocatechuate 4,5-dioxygenase of SYK-6 (Y. Noda, S. Nishikawa, K.-I. Shiozuka, H. Kadokura, H. Nakajima, K. Yano, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki, J. Bacteriol. 172:2704–2709, 1990), catechol 2,3-dioxygenase I (MpcI) of Alcaligenes eutrophus JMP222 (M. Kabisch and P. Fortnagel, Nucleic Acids Res. 18:3405–3406, 1990), the catalytic subunit of the meta-cleavage enzyme (CarBb) for 2′-aminobiphenyl-2,3-diol from Pseudomonas sp. strain CA10 (S. I. Sato, N. Ouchiyama, T. Kimura, H. Nojiri, H. Yamane, and T. Omori, J. Bacteriol. 179:4841–4849, 1997), and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) of Escherichia coli (E. L. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, and T. D. H. Bugg, J. Bacteriol. 178:5249–5256, 1996). The ring fission product formed from OH-DDVA by LigZ developed a yellow color with an absorption maximum at 455 nm, suggesting meta cleavage. Thus, LigZ was concluded to be a ring cleavage extradiol dioxygenase. LigZ activity was detected only for OH-DDVA and 2,2′,3,3′-tetrahydroxy-5,5′-dicarboxybiphenyl and was dependent on the ferrous ion.Lignin is the most common aromatic compound in the biosphere, and the degradation of lignin is a significant step in the global carbon cycle. Lignin is composed of various intermolecular linkages between phenylpropanes and guaiacyl, syringyl, p-hydroxyphenyl, and biphenyl nuclei (5, 34). Lignin breakdown therefore involves multiple biochemical reactions involving the cleavage of intermonomeric linkages, demethylations, hydroxylations, side-chain modifications, and aromatic ring fission (10, 11, 19, 40).Soil bacteria are known to display ample metabolic versatility toward aromatic substrates. Sphingomonas paucimobilis SYK-6 (formerly Pseudomonas paucimobilis SYK-6) has been isolated with 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA) as a sole carbon and energy source. This strain can also grow on syringate, 3-O-methylgallic acid (3OMGA), vanillate, and other dimeric lignin compounds, including β-aryl ether, diarylpropane (β-1), and phenylcoumaran (15). Analysis of the metabolic pathway has indicated that the dimeric lignin compounds are degraded to protocatechuate or 3OMGA (15) and that these compounds are cleaved by protocatechuate 4,5-dioxygenase encoded by ligAB (30). Among the dimeric lignin compounds, the degradation of β-aryl ether and the biphenyl structure is the most important, because β-aryl ether is most abundant in lignin (50%) and the biphenyl structure is so stable that its decomposition should be rate limiting in lignin degradation. We have already characterized the β-etherase and Cα-dehydrogenase genes (2326) (ligFE and ligD, respectively) involved in the degradation of β-aryl ether. In this study, we focused on the genes responsible for the degradation of DDVA in SYK-6.In the proposed DDVA metabolic pathway of S. paucimobilis SYK-6 illustrated in Fig. Fig.1A,1A, DDVA is first demethylated to produce the diol compound 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA). OH-DDVA is then degraded to 5-carboxyvanillic acid (5-CVA), and this compound is converted to 3OMGA (15). The resulting product is cleaved by protocatechuate 4,5-dioxygenase. A ring cleavage enzyme for OH-DDVA has been thought to be involved in this pathway because the production of 5-CVA from OH-DDVA resembles the formation of benzoic acid from biphenyl by 2,3-dihydroxybiphenyl through the sequential action of a meta cleavage enzyme and a meta-cleavage compound hydrolase (Fig. (Fig.1B)1B) (1, 9, 13, 18, 21, 28). Open in a separate windowFIG. 1(A) Proposed metabolic pathway for DDVA by S. paucimobilis SYK-6. (B) Pathway for the conversion of 2,3-dihydroxybiphenyl (2,3-DHBP) to benzoate by the polychlorinated biphenyl-degrading bacteria. The proposed DDVA metabolic pathway follows the previous one (15). Enzymes: LigZ, OH-DDVA oxygenase; LigAB, protocatechuate 4,5-dioxygenase; BphC, 2,3-dihydroxybiphenyl 1,2-dioxygenase; BphD, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase. TCA, tricarboxylic acid.In this study, we isolated the ligZ gene encoding a ring cleavage enzyme for OH-DDVA. The nucleotide sequence of the gene was determined, and the ligZ gene product was characterized.  相似文献   

17.
The major pathways of mRNA turnover in eukaryotic cells are initiated by shortening of the poly(A) tail. Recent work has identified Ccr4p and Pop2p as components of the major cytoplasmic deadenylase in yeast. We now demonstrate that CCR4 encodes the catalytic subunit of the deadenylase and that Pop2p is dispensable for catalysis. In addition, we demonstrate that at least some of the Ccr4p/Pop2p-associated Not proteins are cytoplasmic, and lesions in some of the NOT genes can lead to defects in mRNA deadenylation rates. The Ccr4p deadenylase is inhibited in vitro by addition of the poly(A) binding protein (Pab1p), suggesting that dissociation of Pab1p from the poly(A) tail may be rate limiting for deadenylation in vivo. In addition, the rapid deadenylation of the COX17 mRNA, which is controlled by a member of the Pumilio family of deadenylation activators Puf3p, requires an active Ccr4p/Pop2p/Not deadenylase. These results define the Ccr4p/Pop2p/Not complex as the cytoplasmic deadenylase in yeast and identify positive and negative regulators of this enzyme complex.  相似文献   

18.
One molecule of ADP-ribose 1″,2″-cyclic phosphate (Appr>p) is formed during each of the approximately 500000 tRNA splicing events per Saccharomyces cerevisiae generation. The metabolism of Appr>p remains poorly defined. A cyclic phosphodiesterase (Cpd1p) has been shown to convert Appr>p to ADP-ribose-1″-phosphate (Appr1p). We used a biochemical genomics approach to identify two yeast phosphatases that can convert Appr1p to ADP-ribose: the product of ORF YBR022w (now Poa1p), which is completely unrelated to other known phosphatases; and Hal2p, a known 3′-phosphatase of 5′,3′-pAp. Poa1p is highly specific for Appr1p, and thus likely acts on this molecule in vivo. Poa1 has a relatively low KM for Appr1p (2.8 μM) and a modest kcat (1.7 min−1), but no detectable activity on several other substrates. Furthermore, Poa1p is strongly inhibited by ADP-ribose (KI, 17 μM), modestly inhibited by other nucleotides containing an ADP-ribose moiety and not inhibited at all by other tested molecules. In contrast, Hal2p is much more active on pAp than on Appr1p, and several other tested molecules were Hal2p substrates or inhibitors. poa1-Δ mutants have no obvious growth defect at different temperatures in rich media, and analysis of yeast extracts suggests that ~90% of Appr1p processing activity originates from Poa1p.  相似文献   

19.
In vitro compartmentalisation (IVC), a technique for selecting genes encoding enzymes based on compartmentalising gene translation and enzymatic reactions in emulsions, was used to investigate the interaction of the DNA cytosine-5 methyltransferase M.HhaI with its target DNA (5′-GCGC-3′). Crystallog raphy shows that the active site loop from the large domain of M.HhaI interacts with a flipped-out cytosine (the target for methylation) and two target recognition loops (loops I and II) from the small domain make almost all the other base-specific interactions. A library of M.HhaI genes was created by randomising all the loop II residues thought to make base-specific interactions and directly determine target specificity. The library was selected for 5′-GCGC-3′ methylation. Interestingly, in 11 selected active clones, 10 different sequences were found and none were wild-type. At two of the positions mutated (Ser252 and Tyr254) a number of different amino acids could be tolerated. At the third position, however, all active mutants had a glycine, as in wild-type M.HhaI, suggesting that Gly257 is crucial for DNA recognition and enzyme activity. Our results suggest that recognition of base pairs 3 and 4 of the target site either relies entirely on main chain interactions or that different residues from those identified in the crystal structure contribute to DNA recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号