首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the entry of semliki forest virus into BHK-21 cells   总被引:69,自引:39,他引:69       下载免费PDF全文
The pathway by which semliki forest virus (SFV), a membrane-containing animal virus, enters BHK-21 cells was studied morphologically and biochemically. After attaching to the cell surface, the majority of viruses was rapidly trapped into coated pits, internalized by endocytosis in coated vesicles, and sequestered into intracellular vacuoles and lysosomes. Direct penetration of viruses through the plasma membrane was never observed. To assess the possible involvement of lysosomes in the release of the genome into the cytoplasm, the effect of five lysosomotropic agents, known to increase the lysosomal pH, was tested. All of these agents inhibited SFV infectivity and one, chloroquine (the agent studied in most detail), inhibited a very early step in the infection but had no effect on binding, endocytosis, or intracellular distribution of SFV. Thus, the inhibitory effect was concluded to be either on penetration of the nucelocapsid into the cytoplasm or on uncoating of the viral RNA. Possible mechanisms for the penetration of the genome into the cytoplasm were studied in vitro, using phospholipids-cholesterol liposomes and isolated SFV. When the pH was 6.0 or lower, efficient fusion of the viral membranes and the liposomal membranes occurred, resulting in the transfer of the nucleocapsid into the liposomes. Infection of cells could also be induced by brief low pH treatment of cells with bound SFV under conditions where the normal infection route was blocked. The results suggest that the penetration of the viral genome into the cytosol takes place intracellularly through fusion between the limiting membrane of intracellular vacuoles and the membrane of viruses contained within them. The low pH required for fusion together with the inhibitory effect of lysosomotropic agents implicate lysosomes, or other intracellular vacuoles with sufficiently low pH, as the main sites of penetration.  相似文献   

2.
Penetration of Semliki Forest virus from acidic prelysosomal vacuoles   总被引:37,自引:0,他引:37  
M Marsh  E Bolzau  A Helenius 《Cell》1983,32(3):931-940
To identify and characterize the intracellular site from which the penetration of Semliki Forest virus (SFV) to the cytosolic compartment of the host cell occurs, we determined the time course and temperature dependence of nucleocapsid uncoating and infection in BHK-21 cells. At 37 degrees C the genome release to the cytosol was detected within 5-7 min after virus endocytosis, whereas delivery of the virus particles to secondary lysosomes occurred within 15-20 min. At temperatures of 15 degrees -20 degrees C virus particles were internalized by endocytosis, but they were not delivered to the secondary lysosomes. Nevertheless, at 20 degrees C nucleocapsid uncoating and infection occurred, indicating that secondary lysosomes are not required for SFV penetration. We conclude that the penetration reaction occurs in prelysosomal endocytic vacuoles (endosomes). As SFV penetration by membrane fusion requires a pH less than 6 and the presence of cholesterol in the target membrane, the data indicate that endosomes are acidic and contain cholesterol.  相似文献   

3.
Infectious Cell Entry Mechanism of Influenza Virus   总被引:18,自引:8,他引:10       下载免费PDF全文
Interaction between influenza virus WSN strain and MDCK cells was studied by using spin-labeled phospholipids and electron microscopy. Envelope fusion was negligibly small at neutral pH but greatly activated in acidic media in a narrow pH range around 5.0. The half-time was less than 1 min at 37°C at pH 5.0. Virus binding was almost independent of the pH. Endocytosis occurred with a half-time of about 7 min at 37°C at neutral pH, and about 50% of the initially bound virus was internalized after 1 h. Electron micrographs showed binding of virus particles in coated pits in the microvillous surface of plasma membrane and endocytosis into coated vesicles. Chloroquine inhibited virus replication. The inhibition occurred when the drug was added not later than 10 min after inoculation. Chloroquine caused an increase in the lysosomal pH 4.9 to 6.1. The drug did not affect virus binding, endocytosis, or envelope fusion at pH 5.0. Electron micrographs showed many virus particles remaining trapped inside vacuoles even after 30 min at 37°C in the presence of drug, in contrast to only a few particles after 10 min in vacuoles and secondary lysosomes in its absence. Virus replication in an artificial condition, i.e., brief exposure of the inoculum to acidic medium followed by incubation in neutral pH in the presence of chloroquine, was also observed. These results are discussed to provide a strong support for the infection mechanism of influenza virus proposed previously: virus uptake by endocytosis, fusion of the endocytosed vesicles with lysosome, and fusion of the virus envelope with the surrounding vesicle membrane in the secondary lysosome because of the low pH. This allows the viral genome to enter the target cell cytoplasm.  相似文献   

4.
Vaccinia virus infects a wide variety of mammalian cells from different hosts, but the mechanism of virus entry is not clearly defined. The mature intracellular vaccinia virus contains several envelope proteins mediating virion adsorption to cell surface glycosaminoglycans; however, it is not known how the bound virions initiate virion penetration into cells. For this study, we investigated the importance of plasma membrane lipid rafts in the mature intracellular vaccinia virus infection process by using biochemical and fluorescence imaging techniques. A raft-disrupting drug, methyl-beta-cyclodextrin, inhibited vaccinia virus uncoating without affecting virion attachment, indicating that cholesterol-containing lipid rafts are essential for virion penetration into mammalian cells. To provide direct evidence of a virus and lipid raft association, we isolated detergent-insoluble glycolipid-enriched membranes from cells immediately after virus infection and demonstrated that several viral envelope proteins, A14, A17L, and D8L, were present in the cell membrane lipid raft fractions, whereas the envelope H3L protein was not. Such an association did not occur after virions attached to cells at 4 degrees C and was only observed when virion penetration occurred at 37 degrees C. Immunofluorescence microscopy also revealed that cell surface staining of viral envelope proteins was colocalized with GM1, a lipid raft marker on the plasma membrane, consistent with biochemical analyses. Finally, mutant viruses lacking the H3L, D8L, or A27L protein remained associated with lipid rafts, indicating that the initial attachment of vaccinia virions through glycosaminoglycans is not required for lipid raft formation.  相似文献   

5.
The interferon-induced transmembrane (IFITM) protein family is a group of antiviral restriction factors that impair flexibility and inhibit membrane fusion at the plasma or the endosomal membrane, restricting viral progression at entry. While IFITMs are widely known to inhibit several single-stranded RNA viruses, there are limited reports available regarding their effect in double-stranded DNA viruses. In this work, we have analyzed a possible antiviral function of IFITMs against a double stranded DNA virus, the African swine fever virus (ASFV). Infection with cell-adapted ASFV isolate Ba71V is IFN sensitive and it induces IFITMs expression. Interestingly, high levels of IFITMs caused a collapse of the endosomal pathway to the perinuclear area. Given that ASFV entry is strongly dependent on endocytosis, we investigated whether IFITM expression could impair viral infection. Expression of IFITM1, 2 and 3 reduced virus infectivity in Vero cells, with IFITM2 and IFITM3 having an impact on viral entry/uncoating. The role of IFITM2 in the inhibition of ASFV in Vero cells could be related to impaired endocytosis-mediated viral entry and alterations in the cholesterol efflux, suggesting that IFITM2 is acting at the late endosome, preventing the decapsidation stage of ASFV.  相似文献   

6.
A novel entry mechanism has been proposed for the avian sarcoma and leukosis virus (ASLV), whereby interaction with specific cell surface receptors activates or primes the viral envelope glycoprotein (Env), rendering it sensitive to subsequent low-pH-dependent fusion triggering in acidic intracellular organelles. However, ASLV fusion seems to proceed to a lipid mixing stage at neutral pH, leading to the suggestion that low pH might instead be required for a later stage of viral entry such as uncoating (L. J. Earp, S. E. Delos, R. C. Netter, P. Bates, and J. M. White. J. Virol. 77:3058-3066, 2003). To address this possibility, hybrid virus particles were generated with the core of human immunodeficiency virus type 1 (HIV-1), a known pH-independent virus, and with subgroups A or B ASLV Env proteins. Infection of cells by these pseudotyped virions was blocked by lysosomotropic agents, as judged by inhibition of HIV-1 DNA synthesis. Furthermore, by using HIV-1 cores that contain a Vpr-beta-lactamase fusion protein (Vpr-BlaM) to monitor viral penetration into the cytosol, we demonstrated that virions bearing ASLV Env, but not HIV-1 Env, enter the cytosol in a low-pH-dependent manner. This effect was independent of the presence of the cytoplasmic tail of ASLV Env. These studies provide strong support for the model, indicating that low pH is required for ASLV Env-dependent viral penetration into the cytosol and not for viral uncoating.  相似文献   

7.
Assembly of African swine fever virus: role of polyprotein pp220.   总被引:7,自引:5,他引:2       下载免费PDF全文
Polyprotein processing is a common strategy of gene expression in many positive-strand RNA viruses and retroviruses but not in DNA viruses. African swine fever virus (ASFV) is an exception because it encodes a polyprotein, named pp220, to produce several major components of the virus particle, proteins p150, p37, p34, and p14. In this study, we analyzed the assembly pathway of ASFV and the contribution of the polyprotein products to the virus structure. Electron microscopic studies revealed that virions assemble from membranous structures present in the viral factories. Viral membranes became polyhedral immature virions after capsid formation on their convex surface. Beneath the lipid envelope, two distinct domains appeared to assemble consecutively: first a thick protein layer that we refer to as core shell and then an electron-dense nucleoid, which was identified as the DNA-containing domain. Immunofluorescence studies showed that polyprotein pp220 is localized in the viral factories. At the electron microscopic level, antibodies to pp220 labeled all identifiable forms of the virus from the precursor viral membranes onward, thus indicating an early role of the polyprotein pp220 in ASFV assembly. The subviral localization of the polyprotein products, examined on purified virions, was found to be the core shell. In addition, quantitative studies showed that the polyprotein products are present in equimolar amounts in the virus particle and account for about one-fourth of its total protein content. Taken together, these results suggest that polyprotein pp220 may function as an internal protein scaffold which would mediate the interaction between the nucleoid and the outer layers similarly to the matrix proteins of other viruses.  相似文献   

8.
Entry of adenovirus 2 into HeLa cells   总被引:17,自引:12,他引:5       下载免费PDF全文
Adenovirus 2 (Ad2) uncoating was analyzed as the destabilization of virions which renders the parental genome sensitive to DNase treatment. This event demonstrated a strong temperature dependence, and an Arrhenius plot of initial uncoating rates revealed an inflection point at around 16 degrees C. Activation energies of 331 kJ/mol below and 88 kJ/mol above this temperature were obtained for the uncoating process. Penetration of Ad2 through the plasma membrane was completely inhibited by sodium azide, whereas uncoating was only slightly influenced. This indicated that uncoating had already taken place at the outside of the plasma membrane. Incubations of Ad2 with isolated plasma membranes and cell homogenates showed that intact and metabolizing cells were required for uncoating. We further suggest, based on the inhibitory patterns of EDTA, EGTA, dansylcadaverine, and dithiothreitol, that this destabilization of virions follows upon reorganization in the plasma membrane. In the electron microscope the involvement of coated vesicles was shown for the initial uptake of virions, possibly followed by the engagement of acidic vesicles as judged from the effects of lysosomotropic agents on gene expression. The vectorial transport of virions from the plasma membrane to the nucleus was not affected by reagents interfering with the cytoskeletal system. Consequently, we propose that Ad2 virions are internalized by adsorptive endocytosis.  相似文献   

9.
10.
Uncoating of influenza virus in endosomes   总被引:7,自引:12,他引:7       下载免费PDF全文
The intracellular uncoating site of influenza virus was studied by measuring the fluorescence intensity of probes conjugated to the virus or the isolated hemagglutinin and also by assaying virus replication under various incubation conditions. Acidification of the viral environment was monitored by the decrease in the fluorescence intensity of fluorescein isothiocyanate, and transport of the virus particles into secondary lysosomes was assayed by the increase in the fluorescence intensity of fluorescein isothiocyanate diphosphate. The intracellular pH was estimated by the ratio of fluorescence intensities excited at two different wavelengths. It was found that the viral environment became acidified to a pH value of 5.1 to 5.2 within 10 min at 37 degrees C or 1 h at 20 degrees C after endocytosis. Addition of ammonium chloride to the medium rapidly raised the pH to 6.7. Transport of the virus particles into the secondary lysosomes was slower and negligibly low during those incubation periods. Virus replication occurred when the cells were incubated for 10 min at 37 degrees C or for 1 h at 20 degrees C, followed by incubation in the presence of ammonium chloride for a total of 12 h. These results indicate the uncoating of influenza virus in endosomes before reaching the secondary lysosomes.  相似文献   

11.
African swine fever virus (ASFV) is a large DNA virus that enters host cells after receptor-mediated endocytosis and depends on acidic cellular compartments for productive infection. The exact cellular mechanism, however, is largely unknown. In order to dissect ASFV entry, we have analyzed the major endocytic routes using specific inhibitors and dominant negative mutants and analyzed the consequences for ASFV entry into host cells. Our results indicate that ASFV entry into host cells takes place by clathrin-mediated endocytosis which requires dynamin GTPase activity. Also, the clathrin-coated pit component Eps15 was identified as a relevant cellular factor during infection. The presence of cholesterol in cellular membranes, but not lipid rafts or caveolae, was found to be essential for a productive ASFV infection. In contrast, inhibitors of the Na+/H+ ion channels and actin polymerization inhibition did not significantly modify ASFV infection, suggesting that macropinocytosis does not represent the main entry route for ASFV. These results suggest a dynamin-dependent and clathrin-mediated endocytic pathway of ASFV entry for the cell types and viral strains analyzed.Many animal viruses have evolved to exploit endocytosis to gain entry into host cells after initial attachment of virions to specific cell surface receptors. To date, a number of different routes of endocytosis used by viruses have been characterized, including clathrin-mediated endocytosis, uptake via caveolae/lipid rafts, macropinocytosis, phagocytosis, and other routes that are currently poorly understood.In recent years, viruses have also been used as tools to study cellular endocytosis and membrane trafficking at the molecular level, with there being special interest in the regulation of the diverse routes (31), since examples of viruses using each route can be found (reviewed in references 26, 31, and 38). The clathrin-mediated endocytic route has been the most extensively studied at the molecular level, and it has been shown to be used by diverse mammalian enveloped viruses, such as vesicular stomatitis virus (42), Semliki Forest virus (19), and West Nile virus (11), to infect cells. Influenza virus and HIV-1 also can use this pathway as an alternative route of entry (12, 39). Clathrin is assembled on the inside face of the plasma membrane to form a characteristic coated pit (CCP). During this process, clathrin also interacts with a number of essential molecules, including Eps15, adapter protein AP2, and dynamin GTPase (9). Additionally, clathrin-mediated endocytosis also provides endocytic vesicles as an acidified environment for those viruses that require a low-pH step during the first stages of infection to initiate capsid destabilization and genome uncoating. On the other hand, the lipid raft/caveola-based route is generally used by those acid-independent viruses. Recently, macropinocytosis is generating growing interest, since it has been demonstrated to be induced by some viruses from diverse families, such as vaccinia virus and adenovirus serotype 3 (5, 29), to gain entry into cells.In this study, we have focused on the entry of African swine fever virus (ASFV), a large enveloped DNA virus with a genomic composition similar to that of poxviruses, although the virion structure and morphology resemble those of iridoviruses. At present, it is the sole member of the newly created family Asfarviridae (16, 43). It is the etiologic agent responsible for a highly lethal and hemorrhagic disease affecting domestic swine, which often results in important economic losses in affected countries because of the high rate of mortality associated with this illness and the lack of an effective vaccine.Early studies of the entry of BA71V, a Vero cell-adapted ASFV strain, into host cells showed that this internalization of virus particles is a temperature-, energy-, and low-pH-dependent process, since it does not occur at 4°C or in the presence of inhibitors of cellular respiration or lysosomotropic agents (2, 44). All these features are consistent with a receptor-mediated endocytosis mechanism of entry. However, there are still numerous questions to be answered. One of them is the nature of the cellular receptor(s) that mediates ASFV entry, which remains largely unknown, although a correlation between cell susceptibility to infection and expression of porcine CD163 on the surface of swine monocytes/macrophages has been reported (36). In regard to the viral components involved in this initial step, the p12 and p54 proteins were shown to play a role during attachment to the cell surface and p30 during internalization, as inferred from previous studies with neutralizing antibodies against p30 and p54 (17) and blockage of infection after saturation of virus binding sites with recombinant p12 (6). Early electron microscopy (EM) studies (2, 45) revealed that attachment of ASFV virions to the cell surface often occurs in coated pits; however, their later presence inside coated vesicles is not fully clear. After attachment, virions are detected inside endosomes, where fusion with the viral membrane takes place. The ASFV cycle continues with the transport of viral cores via retrograde transport along microtubules to reach a perinuclear area, known as the viral factory, where replication occurs (4).In recent times, knowledge about different endocytic pathways and their regulatory molecules has notably increased, and the development of molecular tools to study these processes is becoming increasingly precise (38). In the present study, we examined the ASFV infection using a variety of chemical inhibitors and dominant negative molecules to disrupt different endocytic pathways. Our results confirmed a major role for dynamin-dependent and clathrin-mediated endocytosis during the first stages of ASFV infection, with no significant differences in the behavior of the two ASFV strains and the two cell lines analyzed.  相似文献   

12.
African swine fever virus (ASFV) is a member of a family of large nucleocytoplasmic DNA viruses that include poxviruses, iridoviruses, and phycodnaviruses. Previous ultrastructural studies of ASFV using chemical fixation and cryosectioning for electron microscopy (EM) have produced uncertainty over whether the inner viral envelope is composed of a single or double lipid bilayer. In this study we prepared ASFV-infected cells for EM using chemical fixation, cryosectioning, and high-pressure freezing. The appearance of the intracellular viral envelope was determined and compared to that of mitochondrial membranes in each sample. The best resolution of membrane structure was obtained with samples prepared by high-pressure freezing, and images suggested that the envelope of ASFV consisted of a single lipid membrane. It was less easy to interpret virus structure in chemically fixed or cryosectioned material, and in the latter case the virus envelope could be interpreted as having two membranes. Comparison of membrane widths in all three preparations indicated that the intracellular viral envelope of ASFV was not significantly different from the outer mitochondrial membrane (P < 0.05). The results support the hypothesis that the intracellular ASFV viral envelope is composed of a single lipid bilayer.  相似文献   

13.
Lysis of HeLa cells infected with poliovirus revealed intact virus; 135S particles, devoid of VP4 but containing the viral RNA; and 80S empty capsids. During infection the kinetics of poliovirus uncoating showed a continuous decrease of intact virus, while the number of 135S particles and empty shells increased. After 1.5 h of infection conformational transition to altered particles resulted in complete disappearance of intact virions. To investigate the mechanism of poliovirus uncoating, which has been suggested to depend on low pH in endosomal compartments of cells, we used lysosomotropic amines to raise the pH in these vesicles. In the presence of ammonium chloride, however, the kinetics of uncoating were similar to those for untreated cells, whereas in cells treated with methylamine, monensin, or chloroquine, uncoating was merely delayed by about 30 min. This effect could be attributed to a delay of virus entry into cells after treatment with methylamine and monensin, whereas chloroquine stabilized the viral capsid itself. Thus, elevation of endosomal pH did not affect virus uncoating. We therefore propose a mechanism of poliovirus uncoating which is independent of low pH.  相似文献   

14.
For viruses, the following mechanisms of penetration into cells are typical: clathrin- or dinaminmediated endocytosis, the formation of caveolae, local lysis of cell membranes, and macropinocytosis. It is accepted that (those nonenveloped viruses in the Picornaviridae family) enter cells mostly through the local lysis of their membranes. The purpose of the present study is to research the mechanisms of penetration into resident macrophages of viruses of the indicated family, including poliovirus, Echol1 and Coxsackie B1 viruses, and Type 71 enterovirus. It has been detected that, at the adhesion sites of the Coxsackie B1 virus and Type 71 enterovirus on a macrophage surface, invaginations of the plasma membranes of cells appear, followed by the consequent formation of endocytoplasmatic vesicles, i.e., caveolae. The penetration of poliovirus into macrophages occurs both through the formation of caveolae and the local lysis of the plasmolemma of cells; during the later terms (after 45 min), macropinocytosis is observed in the viral particles during the first 15 min after the Echol1 virus penetrated the cytoplasm of macrophages through the local lysis of their plasmolemma. Thereafter, the formation of endocytic vacuolae including viral particles was observed in the cytoplasm of infected macrophages. The exit of the Echol1 virus from endocytic vacuoles was performed by the local lysis of cell membrane.  相似文献   

15.
African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.  相似文献   

16.
Infectious HIV-1 assembles in late endosomes in primary macrophages   总被引:27,自引:0,他引:27  
Although human immunodeficiency virus type 1 (HIV-1) is generally thought to assemble at the plasma membrane of infected cells, virions have been observed in intracellular compartments in macrophages. Here, we investigated virus assembly in HIV-1-infected primary human monocyte-derived macrophages (MDM). Electron microscopy of cryosections showed virus particles, identified by their morphology and positive labeling with antibodies to the viral p17, p24, and envelope proteins, in intracellular vacuoles. Immunolabeling demonstrated that these compartments contained the late endosomal marker CD63, which was enriched on vesicles within these structures and incorporated into the envelope of budding virions. The virus-containing vacuoles were also labeled with antibodies against LAMP-1, CD81, and CD82, which were also incorporated into the viral envelope. To assess the cellular source of infectious viruses derived from MDM, virus-containing media from infected cells were precipitated with specific antibodies. Only antibodies against antigens found in late endosomes precipitated infectious virus, whereas antibodies against proteins located primarily on the cell surface did not. Our data indicate that most of the infectious HIV produced by primary macrophages is assembled on late endocytic membranes and acquires antigens characteristic of this compartment. This notion has significant implications for understanding the biology of HIV and its cell-cell transmission.  相似文献   

17.
The receptor "priming" model for entry of the retrovirus avian sarcoma and leukosis virus (ASLV) predicts that upon binding cell surface receptors, virions are endocytosed and trafficked to acidic endosomes where fusion occurs. To test this model directly, we have now followed subgroup A ASLV (ASLV-A) virions entering cells via either the transmembrane (TVA950) or glycophosphatidylinositol (GPI)-anchored (TVA800) forms of the cellular receptor. Our results suggest that viruses entering via these two forms of receptor are subjected to different intracellular fates, perhaps due to use of different endocytic trafficking pathways to access acidic fusion compartments. Kinetic analyses demonstrated that virus bound to TVA800 was taken up from the cell surface more slowly but then trafficked to the site of fusion more quickly than that entering via TVA950. Furthermore, transiently arresting virions within putative fusion compartments with NH4Cl led to a substantially greater decrease in the infectivity of virions using TVA950 than with those using TVA800. The increased infectivity of virions using TVA800 correlated with the localization of this receptor to lipid rafts, since this effect was abolished by pharmacological disruption of lipid rafts. Together these results suggest that, in the presence of NH4Cl, virus bound to the GPI-anchored receptor may utilize a lipid raft-dependent pathway to accumulate within a fusion compartment where it is more stable than if it enters via the transmembrane receptor. The TVA800/ASLV-A system should prove useful for the molecular analysis of lipid raft-dependent endocytosis and may provide a tool for the biochemical dissection of the poorly understood uncoating step of retroviral replication.  相似文献   

18.
Three adenovirus type 2-specified immunogens elicited neutralizing antibodies when injected into rabbits; these were the fiber, the hexon, and the penton base. Adenovirus type 2 virions, neutralized by antihexon- or anti-penton base antisera, attached to HeLa cells to the same extent as untreated control virus, and after attachment, neutralized viruses also became sensitive to DNase treatment. A fraction of 75 to 80% of the attached antibody-treated virions penetrated the plasma membrane, which should be compared with an 84 to 88% penetration level in the control series. A majority of the antihexon-neutralized virions was found in intracellular vesicles, as revealed with an electron microscope, but in the case of anti-penton base neutralization, a maximum of 50% of the virions was retained within vesicles, and ca. 30% was free in the cytoplasmic compartment. A value greater than 45% was never obtained for neutralization with a monospecific anti-penton base antiserum, which could imply the existence of alternative pathways for virus penetration into HeLa cells--one of these being sensitive to treatment with anti-penton base antiserum. Antisera containing antifiber specificities efficiently aggregated virions, and the aggregation data mirrored the degree of neutralization. Antifiber-neutralized virions attached to cells to a three- to five times greater extent than untreated control virus, but the former virions had a reduced ability to become sensitive to DNase treatment. Around 15% of the attached antifiber-treated virions was found as large aggregates inside multivesicular bodies or lysosomes.  相似文献   

19.
Diverse enveloped viruses enter cells by endocytosis and fusion with intracellular compartments. Recent evidence suggests that HIV also infects permissive cell lines by fusing with endosomes in a pH-independent manner. This finding highlights the importance of time-resolved monitoring of viral uptake. In the present study, we designed an imaging-based assay to measure endocytosis in real-time through probing the virus' accessibility to external solutions. Exposure of viruses bearing a pH-sensitive GFP (green fluorescent protein) variant on their surface to solutions of different acidity altered the fluorescence of surface-accessible particles, but not internalized viruses. By sequentially applying acidic and alkaline buffers with or without ammonium chloride, we were able to quantify the fractions of internalized and non-internalized virions, as well as the fraction of detached particles, over time. The exact time of single-virus internalization was assessed from the point when a particle ceased to respond to a perfusion with alternating acidic and alkaline buffers. We found that, surprisingly, HIV pseudoparticles entered acidic compartments shortly after internalization. These results suggest that the virus might be sorted to a quickly maturing pool of endocytic vesicles and thus be trafficked to fusion-permissive sites near the cell nucleus.  相似文献   

20.
Research over a period of more than half a century has provided a reasonably accurate picture of mechanisms involved in animal virus entry into their host cells. Successive steps in entry include binding to receptors, endocytosis, passage through one or more membranes, targeting to specific sites within the cell, and uncoating of the genome. For some viruses, the molecular interactions are known in great detail. However, as more viruses are analyzed, and as the focus shifts from tissue culture to in vivo experiments, it is evident that viruses display considerable redundancy and flexibility in receptor usage, endocytic mechanism, location of penetration, and uncoating mechanism. For many viruses, the picture is still elusive because the interactions that they engage in rely on sophisticated adaptation to complex cellular functions and defense mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号