首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-10 (IL-10)-related T cell-derived inducible factor (IL-TIF; provisionally designated IL-22) is a cytokine with limited homology to IL-10. We report here the identification of a functional IL-TIF receptor complex that consists of two receptor chains, the orphan CRF2-9 and IL-10R2, the second chain of the IL-10 receptor complex. Expression of the CRF2-9 chain in monkey COS cells renders them sensitive to IL-TIF. However, in hamster cells both chains, CRF2-9 and IL-10R2, must be expressed to assemble the functional IL-TIF receptor complex. The CRF2-9 chain (or the IL-TIF-R1 chain) is responsible for Stat recruitment. Substitution of the CRF2-9 intracellular domain with the IFN-gammaR1 intracellular domain changes the pattern of IL-TIF-induced Stat activation. The CRF2-9 gene is expressed in normal liver and kidney, suggesting a possible role for IL-TIF in regulating gene expression in these tissues. Each chain, CRF2-9 and IL-10R2, is capable of binding IL-TIF independently and can be cross-linked to the radiolabeled IL-TIF. However, binding of IL-TIF to the receptor complex is greater than binding to either receptor chain alone. Sharing of the common IL-10R2 chain between the IL-10 and IL-TIF receptor complexes is the first such case for receptor complexes with chains belonging to the class II cytokine receptor family, establishing a novel paradigm for IL-10-related ligands similar to the shared use of the gamma common chain (gamma(c)) by several cytokines, including IL-2, IL-4, IL-7, IL-9, and IL-15.  相似文献   

2.
The class II cytokine receptor family includes the receptors for IFN-alphabeta, IFN-gamma, IL-10, and IL-10-related T cell-derived inducible factor/IL-22. By screening genomic DNA databases, we identified a gene encoding a protein of 231 aa, showing 33 and 34% amino acid identity with the extracellular domains of the IL-22 receptor and of the IL-20R/cytokine receptor family 2-8, respectively, but lacking the transmembrane and cytoplasmic domains. A lower but significant sequence identity was found with other members of this family such as the IL-10R (29%), cytokine receptor family 2-4/IL-10Rbeta (30%), tissue factor (26%), and the four IFN receptor chains (23-25%). This gene is located on chromosome 6q24, at 35 kb from the IFNGR1 gene, and is expressed in various tissues with maximal expression in breast, lungs, and colon. The recombinant protein was found to bind IL-10-related T cell-derived inducible factor/IL-22, and to inhibit the activity of this cytokine on hepatocytes and intestinal epithelial cells. We propose to name this natural cytokine antagonist IL-22BP for IL-22 binding protein.  相似文献   

3.
IL-22 is an IL-10 family cytokine that initiates innate immune responses against bacterial pathogens and contributes to immune disease. IL-22 biological activity is initiated by binding to a cell-surface complex composed of IL-22R1 and IL-10R2 receptor chains and further regulated by interactions with a soluble binding protein, IL-22BP, which shares sequence similarity with an extracellular region of IL-22R1 (sIL-22R1). IL-22R1 also pairs with the IL-20R2 chain to induce IL-20 and IL-24 signaling. To define the molecular basis of these diverse interactions, we have determined the structure of the IL-22/sIL-22R1 complex. The structure, combined with homology modeling and surface plasmon resonance studies, defines the molecular basis for the distinct affinities and specificities of IL-22 and IL-10 receptor chains that regulate cellular targeting and signal transduction to elicit effective immune responses.  相似文献   

4.
The purpose of this study was to assess whether the Ag-targeting activity of cytokine/neuroantigen (NAg) fusion proteins may be associated with mechanisms of tolerance induction. To assess this question, we expressed fusion proteins comprised of a N-terminal cytokine domain and a C-terminal NAg domain. The cytokine domain comprised either rat IL-2 or IL-4, and the NAg domain comprised the dominant encephalitogenic determinant of the guinea pig myelin basic protein. Subcutaneous administration of IL2NAg (IL-2/NAg fusion protein) into Lewis rats either before or after an encephalitogenic challenge resulted in an attenuated course of experimental autoimmune encephalomyelitis. In contrast, parallel treatment of rats with IL4NAg (IL-4/NAg fusion protein) or NAg lacked tolerogenic activity. In the presence of IL-2R(+) MHC class II(+) T cells, IL2NAg fusion proteins were at least 1,000 times more potent as an Ag than NAg alone. The tolerogenic activity of IL2NAg in vivo and the enhanced potency in vitro were both dependent upon covalent linkage of IL-2 and NAg. IL4NAg also exhibited enhanced antigenic potency. IL4NAg was approximately 100-fold more active than NAg alone in the presence of splenic APC. The enhanced potency of IL4NAg also required covalent linkage of cytokine and NAg and was blocked by soluble IL-4 or by a mAb specific for IL-4. Other control cytokine/NAg fusion proteins did not exhibit a similar enhancement of Ag potency compared with NAg alone. Thus, the IL2NAg and IL4NAg fusion proteins targeted NAg for enhanced presentation by particular subsets of APC. The activities of IL2NAg revealed a potential relationship between NAg targeting to activated T cells, T cell-mediated Ag presentation, and tolerance induction.  相似文献   

5.
Interleukin-22 (IL-22) plays an important role in the regulation of immune and inflammatory responses in mammals. The IL-22 binding protein (IL-22BP), a soluble receptor that specifically binds IL-22, prevents the IL-22/interleukin-22 receptor 1 (IL-22R1)/interleukin-10 receptor 2 (IL-10R2) complex assembly and blocks IL-22 biological activity. Here we present the crystal structure of the IL-22/IL-22BP complex at 2.75 Å resolution. The structure reveals IL-22BP residues critical for IL-22 binding, which were confirmed by site-directed mutagenesis and functional studies. Comparison of IL-22/IL-22BP and IL-22/IL-22R1 crystal structures shows that both receptors display an overlapping IL-22 binding surface, which is consistent with the inhibitory role played by IL-22 binding protein.

Structured summary

MINT-7010533: IL-22 BP (uniprotkb:Q969J5) and IL-22 (uniprotkb:Q9GZX6) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

6.
7.
8.
Allogeneic T cell activation triggering by MHC class I antigens   总被引:2,自引:0,他引:2  
The role of MHC-encoded class I molecules in allogeneic activation and proliferation of human T lymphocytes was investigated. The study was performed by using primary mixed culture of lymphocytes from MHC recombinant siblings identical for MHC class II Ag (DR, DP, DQ) and displaying MHC class I disparity. The results indicate that such allogeneic combination is sufficient to trigger early activation steps within responder T cells without promoting a significant proliferation. After MHC class I allosensitization, a significant proportion of cells entered the cell cycle (G0----G1). The stimulatory potential of MHC class I Ag was further stressed by the specific induction on responder cells of IL-2R (22% T cell activation Ag positive). Under the same experimental conditions, transferrin receptor expression and IL-2 activity were not detectable. This is consistent with the low T cell proliferation. Exogenous rIL-1 did not improve IL-2 production and the subsequent T cell proliferation indicating that these two events were not associated with a defective accessory cell function involving IL-1 release. MHC class I disparity can also prime precursor CTL to differentiate into IL-2-dependent functional MHC restricted cytotoxic T cells. Conversely IFN-gamma had no effect. Addition to the culture of W6/32, a mAb specifically directed against a monomorphic determinant on human class I HLA-A, -B, and -C Ag was able to block all these activation events. These data clearly indicate a role of HLA class I Ag involvement in the early events triggering allogeneic T cell activation.  相似文献   

9.
T cell-derived cytokines IFN-gamma and IL-4 have different regulatory effects on two functionally important molecules on human monocytes: MHC class II Ag and the Fc receptor for monomeric IgG, Fc gamma RI (CD64). MHC class II Ag, and Fc gamma RI are both upregulated in the presence of IFN-gamma. IL-4 induces MHC class II Ag expression but reduces Fc gamma RI expression. Recently, we showed that the cytokine IL-10 also affects MHC class II Ag expression. Here, we demonstrate that in contrast to the down-regulation of MHC class II Ag expression, IL-10 stimulates Fc gamma RI expression on human monocytes comparable to the levels of Fc gamma RI expression induced by IFN-gamma. The IL-10-induced Fc gamma RI expression is specific because anti-IL-10 antibodies completely reverse the IL-10-induced surface expression of Fc gamma RI and correlate with an enhanced capacity to lyse anti-D-coated human rhesus-positive erythrocytes. IL-10 fails to induce the expression of Fc gamma RII (CD32) and Fc gamma RIII (CD16). Furthermore, we demonstrate that IL-10 is able to prevent down-regulation in surface membrane expression of all three Fc gamma R that can be found when monocytes are cultured in the presence of IL-4. In contrast to IFN-gamma, IL-10 does not restore the reduced antibody-dependent cellular cytotoxicity (ADCC) activity of IL-4-cultured monocytes. Together, these results show that, similar to IFN-gamma, IL-10 is capable of enhancing Fc gamma R expression and ADCC activity, and that IFN-gamma, IL-4, and IL-10 have different regulatory effects on both monocyte Ag-presenting capacity and ADCC activity.  相似文献   

10.
11.
Mycobacterium tuberculosis (MTB) persists inside macrophages despite vigorous immune responses. MTB and MTB 19-kDa lipoprotein inhibit class II MHC (MHC-II) expression and Ag processing by a Toll-like receptor 2-dependent mechanism that is shown in this study to involve a defect in IFN-gamma induction of class II transactivator (CIITA). Exposure of macrophages to MTB or MTB 19-kDa lipoprotein inhibited IFN-gamma-induced MHC-II expression, but not IL-4-induced MHC-II expression, by preventing induction of mRNA for CIITA (total, type I, and type IV), IFN regulatory factor-1, and MHC-II. MTB 19-kDa lipoprotein induced mRNA for suppressor of cytokine signaling (SOCS)1 but did not inhibit IFN-gamma-induced Stat1 phosphorylation. Furthermore, the lipoprotein inhibited MHC-II Ag processing in SOCS1(-/-) macrophages. MTB 19-kDa lipoprotein did not inhibit translocation of phosphorylated Stat1 to the nucleus or Stat1 binding to and transactivation of IFN-gamma-sensitive promoter constructs. Thus, MTB 19-kDa lipoprotein inhibited IFN-gamma signaling independent of SOCS1 and without interfering with the activation of Stat1. Inhibition of IFN-gamma-induced CIITA by MTB 19-kDa lipoprotein may allow MTB to evade detection by CD4(+) T cells.  相似文献   

12.
IL-15, a promising cytokine for treating cancer and viral diseases, is presented in trans by the IL-15 receptor (IL-15R) alpha-chain to the IL-15Rβγc complex displayed on the surface of T cells and natural killer (NK) cells. We previously reported that an asparagine to aspartic acid substitution at amino acid 72 (N72D) of IL-15 provides a 4-5-fold increase in biological activity compared to the native molecule. In this report, we describe Chinese hamster ovary (CHO) cell expression of a soluble complex (IL-15 N72D:IL-15RαSu/Fc) consisting of the IL-15 N72D superagonist and a dimeric IL-15Rα sushi domain-IgG1 Fc fusion protein. A simple but readily scalable affinity and ion exchange chromatography method was developed to highly purify the complex having both IL-15 binding sites fully occupied. The immunostimulatory effects of this complex were confirmed using cell proliferation assays. Treatment of mice with a single intravenous dose of IL-15N72D:IL-15RαSu/Fc resulted in a significant increase in CD8+ T cells and NK cells that was not observed following IL-15 treatment. Pharmacokinetic analysis indicated that the complex has a 25-h half-life in mice which is considerably longer than <40-min half-life of IL-15. Thus, the enhanced activity of the IL-15N72D:IL-15RαSu/Fc complex is likely the result of the increased binding activity of IL-15N72D to IL-15Rβγc, optimized cytokine trans-presentation by the IL-15RαSu domain, the dimeric nature of the cytokine domain and its increased in vivo half-life compared to IL-15. These findings indicate that this IL-15 superagonist complex could serve as a superior immunostimulatory therapeutic agent.  相似文献   

13.
One important mechanism of cross-regulation by opposing cytokines is inhibition of signal transduction, including inhibition of Janus kinase-STAT signaling by suppressors of cytokine signaling. We investigated whether IFN-gamma, a major activator of macrophages, inhibited the activity of IL-10, an important deactivator. Preactivation of macrophages with IFN-gamma inhibited two key anti-inflammatory functions of IL-10, the suppression of cytokine production and of MHC class II expression. Gene expression profiling showed that IFN-gamma broadly suppressed the ability of IL-10 to induce or repress gene expression. Although IFN-gamma induced expression of suppressor of cytokine signaling proteins, IL-10 signal transduction was not suppressed and IL-10 activation of Janus kinases and Stat3 was preserved. Instead, IFN-gamma switched the balance of IL-10 STAT activation from Stat3 to Stat1, with concomitant activation of inflammatory gene expression. IL-10 activation of Stat1 required the simultaneous presence of IFN-gamma. These results demonstrate that IFN-gamma operates a switch that rapidly regulates STAT activation by IL-10 and alters macrophage responses to IL-10. Dynamic regulation of the activation of different STATs by the same cytokine provides a mechanism by which cells can integrate and balance signals delivered by opposing cytokines, and extends our understanding of cross-regulation by opposing cytokines to include reprogramming of signaling and alteration of function.  相似文献   

14.
15.
Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88(-/-) mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II(+) cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines.  相似文献   

16.
Interleukin-22 (IL-22) is a member of the interleukin-10 cytokine family, which is involved in anti-microbial defenses, tissue damage protection and repair, and acute phase responses. Its signaling mechanism involves the sequential binding of IL-22 to interleukin-22 receptor 1 (IL-22R1), and of this dimer to interleukin-10 receptor 2 (IL-10R2) extracellular domain. We report a 1.9A crystal structure of the IL-22/IL-22R1 complex, revealing crucial interacting residues at the IL-22/IL-22R1 interface. Functional importance of key residues was confirmed by site-directed mutagenesis and functional studies. Based on the X-ray structure of the binary complex, we discuss a molecular basis of the IL-22/IL-22R1 recognition by IL-10R2. STRUCTURED SUMMARY:  相似文献   

17.
18.
19.
20.
Interleukin-21 (IL-21) is a pleiotropic cytokine that regulates T-cell, B-cell, NK-cell, and myeloid-cell functions. IL-21 binds with its cognate receptor complex, which consists of the IL-21 receptor (IL-21R) and the common gamma chain. We identified a novel IL-21R-binding molecule, WSB-1, which contains WD-40 repeats and a SOCS-box domain. WSB-1 associates with the middle part of intracytoplasmic region of IL-21R and enhances the maturation of IL-21R from N-linked glycosylated form to fully glycosylated mature form. Furthermore, WSB-1 moderates IL-21R degradation. Taken together, our present study suggests that WSB-1 has a role in the tuning of the maturation and degradation of IL-21R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号