首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evans ML 《Plant physiology》1974,54(2):213-215
Research on the mode of action of auxin in the promotion of growth has shown that auxin treatment leads to hydrogen ion secretion and wall acidification. It has recently been reported that auxin stimulates cell wall β-galactosidase activity in Avena coleoptiles, presumably by causing cell wall acidification, since the pH optimum for the enzyme is about 5.0. It has been suggested that enhancement of β-galactosidase and/or other glycosidase activity mediates growth promotion by auxin or low pH. This hypothesis was tested by examining the effect of inhibitors of β-galactosidase and β-glucosidase. Severe inhibition of measureable β-galactosidase or β-glucosidase activity was found to have no effect on auxin- or acid-promoted growth. It is concluded that neither β-galactosidase nor β-glucosidase plays an important role in short term growth promotion by auxin or acid. The data do not rule out the possibility that some other cell wall glycosidase is involved in auxin or acid action.  相似文献   

2.
The β-galactosidase from the Antarctic gram-negative bacterium Pseudoalteromonas haloplanktis TAE 79 was purified to homogeneity. The nucleotide sequence and the NH2-terminal amino acid sequence of the purified enzyme indicate that the β-galactosidase subunit is composed of 1,038 amino acids with a calculated Mr of 118,068. This β-galactosidase shares structural properties with Escherichia coli β-galactosidase (comparable subunit mass, 51% amino sequence identity, conservation of amino acid residues involved in catalysis, similar optimal pH value, and requirement for divalent metal ions) but is characterized by a higher catalytic efficiency on synthetic and natural substrates and by a shift of apparent optimum activity toward low temperatures and lower thermal stability. The enzyme also differs by a higher pI (7.8) and by specific thermodynamic activation parameters. P. haloplanktis β-galactosidase was expressed in E. coli, and the recombinant enzyme displays properties identical to those of the wild-type enzyme. Heat-induced unfolding monitored by intrinsic fluorescence spectroscopy showed lower melting point values for both P. haloplanktis wild-type and recombinant β-galactosidase compared to the mesophilic enzyme. Assays of lactose hydrolysis in milk demonstrate that P. haloplanktis β-galactosidase can outperform the current commercial β-galactosidase from Kluyveromyces marxianus var. lactis, suggesting that the cold-adapted β-galactosidase could be used to hydrolyze lactose in dairy products processed in refrigerated plants.  相似文献   

3.
Several glycosidases have been isolated from suspensioncultured sycamore (Acer pseudoplatanus) cells. These include an α-galactosidase, an α-mannosidase, a β-N-acetyl-glucosaminidase, a β-glucosidase, and two β-galactosidases. The pH optimum of each of these enzymes was determined. The pH optima, together with inhibition studies, suggest that each observed glycosidase activity represents a separate enzyme. Three of these enzymes, β-glucosidase, α-galactosidase, and one of the β-galactosidases, have been shown to be associated with the cell surface. The enzyme activities associated with the cell surface were shown to possess the ability to degrade to a limited extent isolated sycamore cell walls. It was found that the activities of β-glucosidase and of one of the β-galactosidases increase as the cells go through a period of growth and decrease as cell growth ceases.  相似文献   

4.
Pressey R 《Plant physiology》1983,71(1):132-135
Tomatoes (Lycopersicon esculentum L.) contained a high level of β-galactosidase activity which was due to three forms of the enzyme. During tomato ripening, the sum of their activities remained relatively constant, but the levels of the individual forms of β-galactosidase changed markedly. The three enzymes were separated by a combination of chromatography of DEAE-Sephadex A-50 and Sephadex G-100. During ripening of tomatoes, β-galactosidases I and III levels decreased but the β-galactosidase II level increased more than 3-fold. The three enzymes were optimally active near pH 4, and all were inhibited by galactose and galactonolactone. However, the enzymes differed in molecular weight, Km value with p-nitrophenyl-β-galactoside, and stability with respect to pH and temperature. β-Galactosidase II was the only enzyme capable of hydrolyzing a polysaccharide that was isolated from tomatoes and that consisted primarily of β-1, 4-linked galactose. The ability of β-galactosidase II to degrade the galactan and the increase in its activity during tomato ripening suggest a possible role for this enzyme in tomato softening.  相似文献   

5.
Mature `Bartlett' pear (Pyrus communis) fruits were ripened at 20 C. Fruits at different stages of ripeness were homogenized, and extracts of the low speed pellet (crude cell wall) were prepared. These extracts contained polygalacturonase, pectin esterase, and activity against seven p-nitrophenyl glycoside substrates. Polygalacturonase, α-galactosidase, and α-mannosidase increased in activity as the fruit ripened. Cellulase and activities against pear wall xylan and arabinan were absent from the extracts.  相似文献   

6.
A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant.  相似文献   

7.
1. The influence of pH and the kind of buffer on the hydrolysis of lactose and four hetero-β-galactosides (phenyl β-galactoside, o-nitrophenyl β-galactoside, p-nitrophenyl β-galactoside and 6-bromo-2-naphthyl β-galactoside) by homogenates of rat small-intestinal mucosa has been studied. 2. There are at least two β-galactosidases present in the homogenates, one with optimum pH3–4 and another with optimum pH5–6. 3. The enzyme with the lower pH optimum is mainly a heterogalactosidase. It hydrolyses lactose slowly. The other enzyme is mainly a disaccharidase, since it hydrolyses lactose much more rapidly than the heterogalactosides. 4. Under the conditions used, citrate had an inhibitory effect on the 6-bromo-2-naphthyl β-galactosidase activity at pH3–4, but did not influence the 6-bromo-2-naphthyl β-galactosidase activity at pH5–6 or the hydrolysis of the other substrates at any pH.  相似文献   

8.
Relation of glycosidases to bean hypocotyl growth   总被引:6,自引:5,他引:1       下载免费PDF全文
Nevins DJ 《Plant physiology》1970,46(3):458-462
The enzymes β-glucosidase, α-glucosidase, β-galactosidase, α-galactosidase, and β-xylosidase were detected in Phaseolus vulgaris L. var. Red Kidney bean hypocotyl tissue throughout the first 13 days of development with p-nitrophenyl glycosides as substrates. Activities of all enzymes except β-glucosidase declined as a function of increasing tissue age. In contrast, β-glucosidase activity increased rapidly 3 days after imbibition to a maximal activity at 5 days and then subsided to one-third the maximum by day 7. This activity peak immediately preceded the logarithmic phase of hypocotyl growth. This enzyme is strongly associated with cell walls during extraction, suggesting that it is wall-bound in situ. Various polysaccharide substrates were used to evaluate the specificity of this enzyme.  相似文献   

9.
Indoleacetic acid at 0.017 millimolar inhibited the formation of three peroxidase isoenzymes in both soluble and wall-bound enzyme fractions of wheat coleoptile (Triticum vulgare) tissue. Hydroxyproline at 1 millimolar prevented the indoleacetic acid-induced inhibition. Indoleacetic acid oxidase activity in the soluble fraction was decreased by indoleacetic acid and was restored by hydroxyproline. Most of the indoleacetic acid oxidase activity was located in the electrophoretic zones occupied by two of the peroxidase isoenzymes influenced by indoleacetic acid and hydroxyproline. At least part of the effect of hydroxyproline on auxin-induced elongation of coleoptile tissue may be through control of auxin levels by indoleacetic acid oxidase.  相似文献   

10.
Lee TT 《Plant physiology》1971,47(2):181-185
Indoleacetic acid oxidase in tobacco callus tissues (Nicotiana tabacum L., cultivar White Gold) was resolved into seven anionic isoenzymes by polyacrylamide gel disc electrophoresis. Different concentrations of kinetin and zeatin in the presence of indoleacetic acid affected the level of this enzyme, particularly two fast-moving isoenzymes, A5 and A6. The optimal concentration of kinetin was 0.2 μm; increasing concentrations above this level progressively lowered the total activity of indoleacetic acid oxidase and repressed the development of isoenzymes A5 and A6. Actinomycin D and cycloheximide inhibited the development of these two isoenzymes under the influence of 0.2 μm kinetin, suggesting a requirement for RNA and protein synthesis. The cytokinin-promoted indoleacetic acid oxidase isoenzymes A5 and A6 increased with time and paralleled the dry weight increase of tobacco callus tissues, but the total activity of indoleacetic acid oxidase per unit dry weight of tobacco callus varied with time depending on the stage of plant growth.  相似文献   

11.
The cell walls of barley (Hordeum vulgare var. Himalaya) aleurone layers undergo extensive degradation during the tissue's response to gibberellic acid. Previous work had shown that these cell walls consist almost entirely of arabinoxylan. In this study we show that gibberellic acid stimulates endo-β-1,4-xylanase activity in isolated aleurone layers. In addition, gibberellic acid enhances the activity of two glycosidases: β-xylopyranosidase and α-arabinofuranosidase. No gibberellic acid-stimulated cellulase activity was detected. Germination studies showed a similar pattern of enzyme development in intact seeds.  相似文献   

12.
Vacuoles isolated from Nicotiana rustica var brasilia have been shown to contain significant levels of glycosidase activity when assayed using p-nitrophenyl-glycosides as substrates. The substrate specificity for the glycosidases in the vacuolar fraction closely paralleled that found in the protoplasts, and the leaf tissue from which the vacuoles were isolated. The substrate specificity of the vacuolar enzyme(s) was different from glycosidic activity found in the commercial digestive enzyme preparations used to isolate the protoplasts from leaf tissue. It was demonstrated that 70 to 90% of the glycosidases that were found in the protoplasts appeared to be localized within the vacuole, when the p-nitrophenyl substrates α- and β-;d-galactose, β-d-glucose, and α-d-mannose were used. Neither the vacuolar nor the protoplast enzymes were active towards the naturally occurring phenolic glycoside, rutin. α-Mannosidase appears to be a valuable marker enzyme for vacuoles isolated from mesophyll leaf cells of tobacco.  相似文献   

13.
1. The activities of β-galactosidase, β-glucosidase, β-glucuronidase and N-acetyl-β-glucosaminidase from rat kidney have been compared when 4-methylumbelliferyl glycosides are used as substrates. 2. Separation by gel electrophoresis at pH7·0 indicated slow- and fast-moving components of rat-kidney β-galactosidase. 3. The fast-moving component is also associated with the total β-glucosidase activity and inhibition experiments indicate that a single enzyme species is responsible for both activities. 4. DEAE-cellulose chromatography and filtration on Sephadex gels suggests that the β-glucosidase component is a small acidic molecule, of molecular weight approx. 40000–50000, with optimum pH5·5–6·0 for β-galactosidase and β-glucosidase activities. 5. The major β-galactosidase component has low electrophoretic mobility, a calculated molecular weight of 80000 and optimum pH3·7.  相似文献   

14.
The effect of a number of physiological variables on the secretion of polysaccharide-degrading enzymes by culture-grown Colletotrichum lindemuthianum (Saccardo and Magnus) Scribner was determined. The number of spores used to inoculate cultures grown on isolated bean hypocotyl cell walls affects the time after inoculation at which enzyme secretion occurs, but has no significant effect on the maximal amount of enzyme ultimately secreted. Cell walls isolated from bean leaves, first internodes, or hypocotyls (susceptible to C. lindemuthianum infection), when used as carbon source for C. lindemuthianum growth, stimulate the fungus to secrete more α-galactosidase than do cell walls isolated from roots (resistant to infection). The concentration of carbon source used for fungal growth determines the final level of enzyme activity in the culture fluid. The level of enzyme secretion is not proportional to fungal growth; rather, enzyme secretion is induced. Maximal α-galactosidase activity in the culture medium is found when the concentration of cell walls used as carbon source is 1% or greater. A higher concentration of cell walls is necessary for maximal α-arabinosidase activity. Galactose, when used as the carbon source, stimulates α-galactosidase secretion but, at comparable concentrations, is less effective in doing so than are cell walls. Polysaccharide-degrading enzymes are secreted by C. lindemuthianum at different times during growth of the pathogen on isolated cell walls. Pectinase and α-arabinosidase are secreted first, followed by β-xylosidase and cellulase, then β-glucosidase, and, finally, α-galactosidase.  相似文献   

15.
The objective of this study was to evaluate the impact of hormonal status and bacterial vaginosis (BV) on the glycosidases present and glycosylation changes as assessed by lectin binding to cervicovaginal lavage constituents. Frozen cervicovaginal lavage samples from a completed study examining the impact of reproductive hormones on the physicochemical properties of vaginal fluid were utilized for the present study. In the parent study, 165 women were characterized as having BV, intermediate or normal microflora using the Nugent criteria. The presence of glycosidases in the samples was determined using quantitative 4-methyl-umbelliferone based assays, and glycosylation was assessed using enzyme linked lectin assays (ELLA). Women with BV had elevated sialidase, α-galactosidase, β-galactosidase and α-glucosidase activities compared to intermediate or normal women (P<0.001, 0.003, 0.006 and 0.042 respectively). The amount of sialic acid (Sambucus nigra, P = 0.003) and high mannose (griffithsin, P<0.001) were reduced, as evaluated by lectin binding, in women with BV. When the data were stratified according to hormonal status, α-glucosidase and griffithsin binding were decreased among postmenopausal women (P<0.02) when compared to premenopausal groups. These data suggest that both hormonal status and BV impact the glycosidases and lectin binding sites present in vaginal fluid. The sialidases present at increased levels in women with BV likely reduce the number of sialic acid binding sites. Other enzymes likely reduce griffithsin binding. The alterations in the glycosidase content, high mannose and sialic acid binding sites in the cervicovaginal fluid associated with bacterial vaginosis may impact susceptibility to viruses, such as HIV, that utilize glycans as a portal of entry.  相似文献   

16.
The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides.  相似文献   

17.
The changes in activities of soluble β-galactosidase and two forms of wall-bound β-galactosidases extracted with NaCl and EDTA were investigated throughout the development of muskmelon (Cucumis melo L. cv Prince) fruits. DEAE-cellulose ion-exchange chromatography of soluble β-galactosidase revealed the presence of two isoforms. Soluble isoform I was detected in all stages throughout the fruit development, whereas soluble isoform II appeared around 34 d after anthesis when fruit ripening initiated. Both NaCl- and EDTA-released β-galactosidase activities also increased as ripening proceeded. The soluble and wall-bound forms behaved differently upon ion-exchange chromatography. Enzymological properties such as optimum pH, optimum temperature, Km values for p-nitrophenyl β-d-galactopyranoside, and inhibition by metal ions were nearly similar in all forms. Molecular sizes of pectic polymers and hemicelluloses extracted from fruit mesocarp cell walls were shifted from larger to smaller polymers during ripening, as determined by gel filtration profiles. NaCl-released β-galactosidase from cell walls of ripe fruits had the ability to degrade in vitro the pectin extracted from preripe fruit cell walls to smaller sizes of pectin similar to those that were observed in ripe cell walls in situ. Both soluble isoform I and II were able to degrade in vitro the 5% KOH-extractable hemicellulose from preripe fruit cell walls to sizes of molecules similar to those that were observed in ripe cell walls in situ. Soluble isoform I and the NaCl-released form from ripe fruits were able to modify in vitro 24% KOH-extractable hemicellulose from preripe cell walls to sizes of molecules similar to those that were observed in ripe fruits in situ.  相似文献   

18.
A lectin from the lichen Evernia prunastri developing arginase activity (EC. 3.5.3.1) binds to the homologous algae that contain polygalactosilated urease (EC. 3.5.1.5) in their cell walls acting as a lectin ligand. The enzyme bound to its ligand shows to be inactive to hydrolyze of arginine. Hydrolysis of the galactoside moiety of urease in intact algae with α-1,4-galactosidase (EC. 3.2.1.22) releases high amount of D-galactose and impedes the binding of the lectin to the algal cell wall. However, the use of β-,4-galactosidase (EC.3.2.1.23) releases low amounts of D-galactose from the algal cell wall and does not change the pattern of binding of the lectin to its ligand. The production of glycosilated urease is restricted to the season in which algal cells divide and this assures the recognition of new phycobiont produced after cell division by its fungal partner.Key Words: arginase, cell wall, evernia prunastri, lectin ligand, phycobiont, urease  相似文献   

19.
Sugar analogs were used to study the inhibition of cell wall-associated glycosidases in vitro and in vivo. For in vitro characterization, cell walls were highly purified from corn (Zea mays L.) root cortical cells and methods were developed to assay enzyme activity in situ. Inhibitor dependence curves, mode of inhibition, and specificity were determined for three sugar analogs. At low concentrations of castanospermine (CAS), 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol, and swainsonine, these inhibitors showed competitive inhibition kinetics with β-glucosidase, β-GIcNAcase, and α-mannosidase, respectively. Swainsonine specifically inhibited α-mannosidase activity, and 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol specifically inhibited β-N-acetyl-hexosamindase activity. However, CAS inhibited a broad spectrum of cell wall-associated enzymes. When the sugar analogs were applied to 2 day old corn seedlings, only CAS caused considerable changes in root growth and development. To ensure that the concentration of inhibitors used in vitro also inhibited enzyme activity in vivo, an in vivo method for measuring cell wall-associated activity was devised.  相似文献   

20.
This paper reports on the effects of both reducing and nonreducing transgalactooligosaccharides (TOS) comprising 2 to 8 residues on the growth of Bifidobacterium adolescentis DSM 20083 and on the production of a novel β-galactosidase (β-Gal II). In cells grown on TOS, in addition to the lactose-degrading β-Gal (β-Gal I), another β-Gal (β-Gal II) was detected and it showed activity towards TOS but not towards lactose. β-Gal II activity was at least 20-fold higher when cells were grown on TOS than when cells were grown on galactose, glucose, and lactose. Subsequently, the enzyme was purified from the cell extract of TOS-grown B. adolescentis by anion-exchange chromatography, adsorption chromatography, and size-exclusion chromatography. β-Gal II has apparent molecular masses of 350 and 89 kDa as judged by size-exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively, indicating that the enzyme is active in vivo as a tetramer. β-Gal II had an optimal activity at pH 6 and was not active below pH 5. Its optimum temperature was 35°C. The enzyme showed highest Vmax values towards galactooligosaccharides with a low degree of polymerization. This result is in agreement with the observation that during fermentation of TOS, the di- and trisaccharides were fermented first. β-Gal II was active towards β-galactosyl residues that were 1→4, 1→6, 1→3, and 1↔1 linked, signifying its role in the metabolism of galactooligosaccharides by B. adolescentis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号