首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroquine Reduces Neuronal and Glial Iron Uptake   总被引:4,自引:1,他引:3  
The effect of chloroquine, a lysosomotropic agent, on iron uptake into neuronal and glial cell cultures is reported. Chloroquine significantly inhibited iron uptake in both neuronal and glial cells. These findings suggest that iron transport into both neuronal and glial cells is mediated by the transferrin-iron complex.  相似文献   

2.
The anatomical and cellular distribution of non-haem iron, ferritin, transferrin, and the transferrin receptor have been studied in postmortem human brain and these studies, together with data on the uptake and transport of labeled iron, by the rat brain, have been used to elucidate the role of iron and other metal ions in certain neurological disorders. High levels of non-haem iron, mainly in the form of ferritin, are found in the extrapyramidal system, associated predominantly with glial cells. In contrast to non-haem iron, the density of transferrin receptors is highest in cortical and brainstem structures and appears to relate to the iron requirement of neurones for mitochondrial respiratory activity. Transferrin is synthesized within the brain by oligodendrocytes and the choroid plexus, and is present in neurones, consistent with receptor mediated uptake. The uptake of iron into the brain appears to be by a two-stage process involving initial deposition of iron in the brain capillary endothelium by serum transferrin, and subsequent transfer of iron to brain-derived transferrin and transport within the brain to sites with a high transferrin receptor density. A second, as yet unidentified mechanism, may be involved in the transfer of iron from neurones possessing transferrin receptors to sites of storage in glial cells in the extrapyramidal system. The distribution of iron and the transferrin receptor may be of relevance to iron-induced free radical formation and selective neuronal vulnerability in neurodegenerative disorders.  相似文献   

3.
Traditionally, transferrin has been considered the primary mechanism for cellular iron delivery, despite suggestive evidence for additional iron delivery mechanisms. In this study we examined ferritin, considered an iron storage protein, as a possible delivery protein. Ferritin consists of H- and L-subunits, and we demonstrated iron uptake by ferritin into multiple organs and that the uptake of iron is greater when the iron is delivered via H-ferritin compared with L-ferritin. The delivery of iron via H-ferritin but not L-ferritin was significantly decreased in mice with compromised iron storage compared with control, indicating that a feedback mechanism exists for H-ferritin iron delivery. To further evaluate the mechanism of ferritin iron delivery into the brain, we used a cell culture model of the blood-brain barrier to demonstrate that ferritin is transported across endothelial cells. There are receptors that prefer H-ferritin on the endothelial cells in culture and on rat brain microvasculature. These studies identify H-ferritin as an iron transport protein and suggest the presence of an H-ferritin receptor for mediating iron delivery. The relative amount of iron that could be delivered via H-ferritin could make this protein a predominant player in cellular iron delivery. blood-brain barrier; iron transport; H-ferritin  相似文献   

4.
Abstract : Studies on iron uptake into the brain have traditionally focused on transport by transferrin. However, transferrin receptors are not found in all brain regions and are especially low in white matter tracts where high iron concentrations have been reported. Several lines of research suggest that a receptor for ferritin, the intracellular storage protein for iron, may exist. We present, herein, evidence for ferritin binding sites in the brains of adult mice. Autoradiographic studies using 125I-recombinant human ferritin demonstrate that ferritin binding sites in brain are predominantly in white matter. Saturation binding analyses revealed a single class of binding sites with a dissociation constant ( K D) of 4.65 × 10-9 M and a binding site density ( B max) of 17.9 fmol bound/μg of protein. Binding of radiolabeled ferritin can be competitively displaced by an excess of ferritin but not transferrin. Ferritin has previously been shown to affect cellular proliferation, protect cells from oxidative damage, and deliver iron. The significance of a cellular ferritin receptor is that ferritin is capable of delivering 2,000 times more iron per mole of protein than transferrin. The distribution of ferritin binding sites in brain vis-à-vis transferrin receptor distribution suggests distinct methods for iron delivery between gray and whi  相似文献   

5.
Wang  X. S.  Ong  W. Y.  Connor  J. R. 《Brain Cell Biology》2001,30(4):353-360
We have studied by immunocytochemistry, the distribution of DMT-1, a cellular iron transporter responsible for transport of metal irons from the plasma membrane to endosomes, in the normal monkey cerebral neocortex and hippocampus. Light to moderate DMT-1 staining was observed in glial cell bodies in the neocortex, the subcortical white matter, and the hippocampus. Despite light labeling of cell bodies, glial end feet around cortical and subcortical blood vessels were heavily labeled. In the neocortex, the glial cell bodies displayed the morphological features of protoplasmic astrocytes. Labeled glial cells in the subcortical white matter contained dense bundles of glial filaments and were identified as fibrous astrocytes. The observation that DMT-1 was present on astrocytic endfeet suggests that these cells are involved in uptake of iron from endothelial cells. It is possible that the iron could then be redistributed into the extracellular space in the brain parenchyma.  相似文献   

6.
D-Glucose deprivation of primary rat brain glial cell cultures, by incubation with 25 mM D-fructose for 24 h, resulted in a 4-5-fold induction of D-glucose transport activity. In contrast, 24-h D-glucose starvation of primary rat brain neuronal cultures had only a marginal effect (1.5-2-fold) on D-glucose transport activity. Northern blot analysis of total cellular RNA demonstrated that under these conditions the rat brain glial cells specifically increased the steady-state level of the D-glucose transporter mRNA 4-6-fold, whereas Northern blot analysis of the neuronal cell cultures revealed no significant alteration in the amount of D-glucose transporter mRNA by D-glucose deprivation. These findings demonstrated that the D-glucose-dependent regulation of the D-glucose transporter system occurred in a brain cell type-specific manner. The ED50 for the D-glucose starvation increase in the D-glucose transporter mRNA, in the glial cell cultures, occurred at approximately 3.5 mM D-glucose with maximal effect at 0.5 mM D-glucose. Readdition of D-glucose to the starved cell cultures reversed the increase in the D-glucose transporter mRNA levels and D-glucose transport activity to control values within 24 h. The increase in the D-glucose transporter mRNA was relatively rapid with half-maximal stimulation at approximately 2 h and maximal induction by 6-12 h of D-glucose deprivation. A similar time course was also observed for the starvation-induced increase in D-glucose transport activity and D-glucose transporter protein, as determined by Western blot analysis. These results document that, in rat brain glial cells, D-glucose transport activity, protein, and mRNA are regulated by the extracellular D-glucose concentration. Further, this suggests a potential role for hyperglycemia in the down-regulation of the D-glucose transport system in vivo.  相似文献   

7.
The cellular uptake and storage of iron have to be tightly regulated in order to provide iron for essential cellular functions while preventing the iron-catalysed generation of reactive oxygen species (ROS). In contrast to cells in other organs, little is known about the regulation of iron metabolism in brain cells, particularly in astrocytes. To investigate the regulation of iron metabolism in astrocytes we have used primary astrocyte cultures from the brains of newborn rats. After application of ferric ammonium citrate (FAC), cultured astrocytes accumulated iron in a time- (0-48 h) and concentration-dependent (0.01-1 mm) manner. This accumulation was prevented if FAC was applied in combination with the iron-chelator deferoxamine (DFX). Application of FAC to astrocyte cultures caused a strong increase in the cellular content of the iron storage protein ferritin and a decrease in the amount of transferrin receptor (TfR), which is involved in the transferrin-mediated uptake of iron into cells. In contrast, application of DFX strongly increased the level of TfR. Both up-regulation of ferritin content by iron application and up-regulation of TfR content by DFX were prevented by the protein synthesis inhibitor cycloheximide (CHX). During incubation of astrocytes with FAC, a mild and transient increase in the extracellular activity of the cytosolic enzyme lactate dehydrogenase and in the concentration of intracellular ROS was observed. In contrast, prevention of protein synthesis by CHX during incubation with FAC resulted in significantly more cell loss and a persistent and intense increase in the production of intracellular ROS. These results demonstrate that both iron accumulation and deprivation modulate the synthesis of ferritin and TfR in astrocytes and that protein synthesis is required to prevent iron-mediated toxicity in astrocytes.  相似文献   

8.
Ghosh M  Carlsson F  Laskar A  Yuan XM  Li W 《FEBS letters》2011,(4):8474-629
Moderate lysosomal membrane permeabilization (LMP) is an important inducer of apoptosis. Macrophages are professional scavengers and are rich in hydrolytic enzymes and iron. In the present study, we found that LMP by lysosomotropic detergent MSDH resulted in early up-regulation of lysosomal cathepsins, oxidative stress and ferritin up-regulation, and cell death. Lysosomotropic base NH4Cl reduced the ferritin induction and oxidative stress in apoptotic cells induced by MSDH. Cysteine cathepsin inhibitors significantly protected cell death and oxidative stress, but had less effect on ferritin induction. We conclude that oxidative stress induced by lysosomal rupture causes ferritin induction with concomitant mitochondrial damage, which are the potential target for prevention of cellular oxidative stress and cell death induced by typical lysosomotropic substances in different disorders.  相似文献   

9.
The ionic environment of retinal photoreceptors is partially controlled by potassium transporters on retinal glial and retinal pigment epithelial cells (RPE). In this study, serum and epidermal growth factor (EGF) were examined as modulators of potassium transport in confluent cultures of human RPE and rabbit retinal glia. EGF is a known mitogen for confluent RPE cultures and was shown here to also stimulate [3H]thymidine incorporation in cultures of retinal glia. For potassium transport studies 86Rb was used as a tracer during a 17-min incubation. For both retinal cell types the mean total 86Rb uptake in 10% serum was approximately 60% above basal, serum-free controls. For EGF, tested in several experiments in a concentration range from 1 to 100 ng/ml, maximal total uptake was 33 and 24% above controls for RPE and glia, respectively. Inhibitor studies suggested that basal and serum-stimulated uptake for both cell types occurred by the ouabain-sensitive Na-K ATPase pump and by the furosemide- or bumetanide-sensitive Na-K-Cl cotransporter. EGF-stimulated uptake appeared to be due predominantly to the cotransporter. The data suggest that serum components and EGF, which may be available to retina-derived cells under pathologic conditions, may not only stimulate proliferation but may also act as short-term modulators of potassium ion movement and thus affect physiologic processes that are sensitive to ion homeostasis.  相似文献   

10.
N-Acetylaspartate (NAA) is the second most abundant amino acid in the adult brain. It is located and synthesized in neurons and probably degraded in the glia compartment, but the transport mechanisms are unknown. Rat primary neuron and astrocyte cell cultures were exposed to the L isomer of [3H]NAA and demonstrated concentration-dependent uptake of [3H]NAA with a Km approximately 80 microM. However, Vmax was 23+/-6.4 pmol/mg of protein/min in astrocytes but only 1.13+/-0.4 pmol/mg of protein/min in neurons. The fact that neuron cultures contain 3-5% astrocytes suggests that the uptake mechanism is expressed only in glial cells. The astrocyte uptake was temperature and sodium chloride dependent and specific for L-NAA. The affinity for structural analogues was (IC50 in mM) as follows: L-NAA (0.12) > N-acetylaspartylglutamate (0.4) > N-acetylglutamate (0.42) > L-aspartate (>1) > L-glutamate (>1) > or = DL-threo-beta-hydroxyaspartate > N-acetyl-L-histidine. The naturally occurring amino acids showed no inhibitory effect at 1 mM. The glutamate transport blocker trans-pyrrolidine-2,4-dicarboxylate exhibited an IC50 of 0.57 mM, whereas another specific glutamate transport inhibitor, DL-threo-beta-hydroxyaspartate, had an IC50 of >1 mM. The experiments suggest that NAA transport in brain parenchyma occurs by a novel type of sodium-dependent carrier that is present only in glial cells.  相似文献   

11.
Pathways in the binding and uptake of ferritin by hepatocytes   总被引:4,自引:0,他引:4  
The binding and uptake of rat liver ferritin by primary cultures of rat liver hepatocytes was studied in order to assess the relative importance of saturable, high-affinity pathways and nonspecific processes in the incorporation of the protein by the cells. To minimize artifacts, ferritin not subjected to heat treatment and labeled in vivo with 59Fe was used. Binding to cell membranes was estimated from incubations performed at 4 degrees C. After 2 h, when a steady state in cell-associated ferritin had been achieved, approx. 4-10(4) binding sites per cell were observed, with an affinity constant for ferritin of 1 x 10(9) M-1. At 37 degrees C, the maximal uptake from these sites was 1.3 x 10(5) ferritin molecules/cell per h. For ferritin molecules bearing an average of 2400 iron atoms, this uptake amounts to 5 x 10(6) iron atoms/cell per min. Half-maximal uptake was achieved at a ferritin concentration, or KM1, of 3 x 10(-9) M. Although uptake rates at least a thousand times greater could be achieved by binding to the much larger number of low-affinity sites, the apparent KM2 for such 'nonspecific' uptake was 4 x 10(-7) M. At ferritin concentrations up to 2 nM, at least 90% of ferritin bound and taken up by hepatocytes involves saturable, high-affinity sites, presumably true ferritin receptors.  相似文献   

12.
The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuates oxidative stress. Two respiration-deficient (rho(o)) endothelial cell lines with selective deletion of mitochondrial DNA (mtDNA) were created by exposing a parent endothelial cell line (EA) to ethidium bromide. Surviving cells were cloned and mtDNA-deficient cell lines were demonstrated to have diminished oxygen consumption. Total cellular and mitochondrial iron levels were measured, and iron uptake and compartmentalization were measured by inductively coupled plasma atomic emission spectroscopy. Iron transport and storage protein expression were analyzed by real-time polymerase chain reaction and Western blot or ELISA, and total and mitochondrial reactive oxygen species (ROS) generation was measured. Mitochondrial iron content was the same in all three cell lines, but both rho(o) lines had lower iron uptake and total cellular iron. Protein and mRNA expressions of major cytosolic iron transport constituents were down-regulated in rho(o) cells, including transferrin receptor, divalent metal transporter-1 (-IRE isoform), and ferritin. The mitochondrial iron-handling protein, frataxin, was also decreased in respiration-deficient cells. The rho(o) cell lines generated less mitochondrial ROS but released more extracellular H(2)O(2), and demonstrated significantly lower levels of lipid aldehyde formation than control cells. In summary, rho(o) cells with a minimal aerobic capacity had decreased iron uptake and storage. This work demonstrates that mitochondria regulate iron homeostasis in endothelial cells.  相似文献   

13.
14.
Airway epithelial cells prevent damaging effects of extracellular iron by taking up the metal and sequestering it within intracellular ferritin. Epithelial iron transport is associated with transcellular movement of other cations including changes in the expression or activity of Na, K-ATPase and epithelial Na(+) channel (ENaC). Given this relationship between iron and Na(+), we hypothesized that iron uptake by airway epithelial cells requires concurrent Na(+) transport. In preliminary studies, we found that Na(+)-free buffer blocked iron uptake by human airway epithelial cell. Na(+) channels inhibitors, including furosemide, bumetanide, and ethylisopropyl amiloride (EIPA) significantly decreased epithelial cell concentrations of non-heme iron suggesting that Na(+)-dependent iron accumulation involves generalized Na(+) flux into the cells rather than participation of one or more specific Na(+) channels. In addition, efflux of K(+) was detected during iron uptake, as was the influx of phosphate to balance the inward movement of cations. Together, these data demonstrate that intracellular iron accumulation by airway epithelium requires concurrent Na(+)/K(+)exchange.  相似文献   

15.
Converging evidence leaves little doubt that a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich PrP-scrapie (PrPSc) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrPSc, nor the normal function of PrPC is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrPC mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrPC increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrPC on ferritin iron content is enhanced by stimulating PrPC endocytosis, and reversed by cross-linking PrPC on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP102L decreases ferritin iron content significantly relative to PrPC expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrPC nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrPC in cellular iron uptake and transport to ferritin, and dysfunction of PrPC as a significant contributing factor of brain iron imbalance in prion disorders.  相似文献   

16.
Copper deficiency is known to result in a microcytic, hypochromic anemia. Red cells of copper-deficient animals have less hemoglobin than their copper-adequate counterparts. The objective of this work was to determine what role copper plays in maintaining hemoglobin levels. It was hypothesized that the primary defect lies in intracellular iron metabolism. The influence of copper supplementation on iron uptake and storage was examined in a cell line capable of hemoglobin synthesis. The results demonstrated that copper supplementation of human K562 cells was associated with higher cytosolic iron levels and ferritin levels. Copper supplementation of the cell culture altered the initial rate of iron uptake from transferrin and enhanced iron uptake in noninduced cells; however, in hemin-induced K562 cells, which express fewer transferrin receptors on the cell surface, copper appeared to reduce iron uptake. Subsequent studies showed that the cells were able to take up the same amount of iron from transferrin when incubated over a longer period of time (24 hr). In the noninduced (non-hemoglobin synthesizing) cells, proportionally more iron was associated with the ferritin. We concluded from these studies that copper affects both uptake and storage of iron and that copper supplementation reduces cellular iron turnover.  相似文献   

17.
A small to moderate inhibitory effect of iron uptake by isolated rat hepatocytes in short-term studies was seen with oxidative phosphorylation and electron transport inhibitors, and no inhibition by agents affecting pinocytosis. Intracellular transferrin was able to donate iron to the small-molecular weight iron pool, and the latter was able to transfer, by a process not requiring energy or movement of serum transferrin, iron to ferritin. Serum transferrin was not able to lose iron to any cytosol components. Reducing agents were not able to abstract iron from rat serum transferrin to any great extent. It is concluded that iron is taken up by the rat hepatocyte from serum transferrin by a process not requiring energy or movement of serum transferrin into the cell interior; and that intracellular transferrin is involved in acquiring iron from serum transferrin at the cell surface, with iron then being transferred to the small-molecular weight iron pool and hence to ferritin. It is also proposed that intracellular transferrins may have the general function of interacting with serum transferrin at cell surfaces.  相似文献   

18.
Intracellular ferritin in newt (Triturus cristatus) erythroblasts was accessible to the chelating effects of EDTA and pyridoxal phosphate. EDTA (0.5-1 mM) promoted release of radioactive iron from ferritin of pulse-labelled erythroblasts during chase incubation, but its continuous presence was not necessary for ferritin iron mobilization. Brief exposure to EDTA was sufficient to release 60-70% of ferritin 59Fe content during ensuing chase in EDTA-free medium. EDTA also suppressed cellular iron uptake and utilization for heme synthesis, but these activities were restored upon its removal. Pyridoxal-5'-phosphate (0.5-5 mM) also stimulated loss of radioactive iron from ferritin; however, ferritin iron release by pyridoxal phosphate required its continued presence. Unlike EDTA, pyridoxal phosphate did not interfere with iron uptake or its utilization for heme synthesis. Chelator-mobilized ferritin iron accumulated initially in the hemolysate as a low-molecular-weight component and appeared to be eventually released into the medium. No radioactive ferritin was found in the medium of chelator-treated cells, indicating that secretion or loss of ferritin was not responsible for decreasing cellular ferritin 59Fe content. Moreover, there was no transfer of radioactive iron between the low-molecular-weight component released into the medium and plasma transferrin. These results indicate that chelator-released ferritin iron is not available for cellular utilization in heme synthesis and that ferritin iron released by this process is not an alternative or complementary iron source for heme synthesis. Correlation of these data with effects of succinylacetone inhibition of heme synthesis and with previous studies indicates that the main role of erythroid cell ferritin is absorption and storage of excess iron not used for heme synthesis.  相似文献   

19.
H A Huebers  E Csiba  B Josephson  C A Finch 《Blut》1990,60(6):345-351
Iron absorption in the iron-deficient rat was compared with that in the normal rat to better understand the regulation of this dynamic process. It was found that: Iron uptake by the iron-deficient intestinal mucosa was prolonged as a result of slower gastric release, particularly when larger doses of iron were employed. The increased mucosal uptake of ionized iron was not the result of increased adsorption, but instead appeared related to a metabolically active uptake process, whereas the increased mucosal uptake of transferrin iron was associated with increased numbers of mucosal cell membrane transferrin receptors. Mucosal ferritin acted as an iron storage protein, but its iron uptake did not explain the lower iron absorption in the normal rat. Iron loading the mucosal cell (by presenting a large iron dose to the intestinal lumen) decreased absorption for 3 to 4 days. Iron loading of the mucosal cell from circulating plasma transferrin was proportionate to the plasma iron concentration. Mucosal iron content was the composite of iron loading from the lumen and loading from plasma transferrin versus release of iron into the body. These studies imply that an enhanced uptake-throughout mechanism causes the increased iron absorption in the iron-deficient rat. Results were consistent with the existence of a regulating mechanism for iron absorption that responds to change in mucosal cell iron, which is best reflected by mucosal ferritin.  相似文献   

20.
Abstract: Iron is essential in the cellular metabolism of all mammalian tissues, including the brain. Intracerebral iron concentrations vary with age and in several (neurological) diseases. Although it is evident that endothelial cells lining the capillaries in the brain are of importance, factors governing the regulation of intracerebral iron concentration are unknown. To investigate the role of blood-brain barrier endothelial cells in cerebral iron regulation, primary cultures of porcine blood-brain barrier endothelial cells were grown in either iron-enriched or iron-depleted medium. Iron-enriched cells showed a reduction in surface-bound and total transferrin receptor numbers compared with iron-depleted cells. Transferrin receptor kinetics showed that the transferrin receptor internalization rate in iron-enriched cultures was higher, whereas the transferrin receptor externalization rate in iron-enriched cultures was lower than the rate in iron-depleted cultures. Moreover, blood-brain barrier endothelial cells cultured in iron-enriched medium were able to accumulate more iron intracellularly, which underlines our kinetic data on transferrin receptors. Our results agree with histopathological studies on brain tissue of patients with hemochromatosis, suggesting that at high peripheral iron concentrations, the rate of iron transport across the blood-brain barrier endothelial cells is to some extent proportional to the peripheral iron concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号