首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of the epidermis was compared in two strains of pig, the English Large White and the G?ttinger Miniature, after irradiation with 90Sr beta rays. The effects of two types of anesthesia were also tested in pigs of each strain, a volatile gas mixture of approximately 70% oxygen, approximately 30% nitrous oxide, and 2% halothane, and an intravenously administered narcotic azaperon/etimodat with the animals breathing air. Strain- and anesthetic-related changes were compared on the basis of dose-effect curves for the incidence of moist desquamation from which ED50 values (+/- SE) were determined, i.e., the dose required to produce this effect in 50% of the fields irradiated. For English Large White pigs anesthetized with the volatile gas mixture, an ED50 of 27.32 +/- 0.52 Gy was obtained for moist desquamation. Irradiation with the azaperon/etomidat anesthesia in this strain of pig produced a significantly higher ED50 of 33.36 +/- 0.76 Gy (P less than 0.001). This appeared to be related to the fact that the animals were breathing air, i.e., a lower oxygen concentration (approximately 21%), at the time of irradiation. For the G?ttinger Miniature pig the ED50 values for moist desquamation were 38.93 +/- 3.12 Gy and 43.36 +/- 1.34 Gy while using the gaseous anesthetic mixture and the azaperon/etomidat anesthesia with the animals breathing air, respectively. These ED50 values are 10-11 Gy higher than those obtained for the English Large White pig under identical conditions of anesthesia, which resulted in a strain difference ratio of approximately 1.35. Radiation under the volatile gas mixture anesthesia resulted in a uniform irradiation response over the skin of the flank in both strains of pig. Radiation under azaperon/etomidat anesthesia resulted in a nonuniform skin response over the flank. The ED50 for moist desquamation was significantly higher in dorsal sites on the flank compared with the ventral area of English Large White pigs; a similar trend was seen in G?ttinger Miniature pigs. This difference in the radiosensitivity over the flank skin while the animals are under azaperon/etomidat anesthesia at the time of irradiation was associated with the animals breathing air and is in agreement with findings published previously for animals under halothane anesthesia and breathing air.  相似文献   

2.
Circular areas of pig skin from 1- to 40-mm diameter were irradiated with beta emitters of high, medium, and low energies, 90Sr, 170Tm, and 147Pm, respectively. The study provides information for radiological protection problems of localized skin exposures. During the first 16 weeks after irradiation 90Sr produced a first reaction due to epithelial cell death followed by a second reaction attributable to damage to the dermal blood vessels. 170Tm and 147Pm produced the epithelial reaction only. The epithelial dose response varied as a function of beta energy. The doses required to produce moist desquamation in 50% of 15- to 22.5-mm fields (ED50) were 30-45 Gy from 90Sr, approximately 80 Gy from 170Tm, and approximately 500 Gy from 147Pm. A model involving different methods of epithelial repopulation is proposed to explain this finding. An area effect was observed in the epithelial response to 90Sr irradiation. The ED50 for moist desquamation ranged from approximately 25 Gy for a 40-mm source to approximately 450 Gy for a 1-mm source. The 5-, 9-, and 19-mm 170Tm sources all produced an ED50 of approximately 80 Gy, while the value for the 2-mm source was approximately 250 Gy. It is also suggested that the area effects could be explained by different modes of epithelial repopulation after irradiation. After high energy beta irradiation repopulation would be mainly from the field periphery, while after lower energy irradiation repopulation from hair follicle epithelium would predominate.  相似文献   

3.
The sensitivity of the rat spinal cord to single and split doses of radiation and the resulting relative biological effectiveness (RBE) were determined for carbon-ion irradiations (12C) in the plateau and Bragg-peak regions. The cranial part of the cervical and thoracic spinal cords of 180 rats were irradiated with one or two fractions of 12C ions or photons, respectively. Dose-response curves for the end point symptomatic myelopathy were established, and the resulting values for the ED50 (dose for 50% complication probability) were used to determine the RBEs. A median latency for myelopathy of 167 days (range, 121-288 days) was found. The ED50 values were 17.1 +/- 0.8 Gy, 24.9 +/- 0.7 Gy (one and two fractions, 12C plateau) and 13.9 +/- 0.8, 15.8 +/- 0.7 Gy (one and two fractions, 12C Bragg peak), respectively. For photons we obtained ED50 values of 24.5 +/- 0.8 Gy for single doses and 34.2 +/- 0.7 Gy when two fractions were applied. The corresponding RBEs were 1.43 +/- 0.08, 1.37 +/- 0.12 (one and two fractions, 12C plateau) and 1.76 +/- 0.05, 2.16 +/- 0.11 (one and two fractions, 12C Bragg peak), respectively. Hematoxylin and eosin staining revealed necrosis of the white matter in the spinal cord in all symptomatic animals. In summary, from one- and two-fraction photon, 12C plateau and Bragg-peak irradiation of the rat spinal cord, we have established RBEs as well as the individual ED50's. From the latter there is a clear indication of repair processes for fractionated photons and 12C plateau ions which are significantly reduced by using Bragg-peak ions. Additional studies are being carried with 6 and 18 fractions to further refine and define the RBE and ED50 values and estimate the alpha/beta ratios.  相似文献   

4.
The effects of bremsstrahlung, electron, gamma, and neutron radiations were investigated on the motor performance of male Sprague-Dawley rats. Rats were irradiated at a midline tissue dose rate of 20 Gy/min +/- 1 with one of the following: 18.6-MeV electrons (N = 40) or 18.1-MVp bremsstrahlung (N = 57) from a linear accelerator, 60Co 1.25-MeV gamma-ray photons (N = 48), or reactor neutrons at 1.67 MeV tissue-kerma weighted-mean energy (N = 43). Radiation effects were determined by establishing median effective doses (ED50) for rats trained on an accelerod, a shock-avoidance motor performance test. ED50's were based on 10-min postexposure performance. The ED50's were 61 Gy for electrons, 81 Gy for bremsstrahlung, 89 Gy for gamma-ray photons, and 98 Gy for neutrons. In terms of relative biological effectiveness to produce early performance decrement (10 min from the start of irradiation), significant differences existed between the electrons and the other three fields and between the bremsstrahlung and neutron fields. These differences could not be explained by macroscopic dose distribution patterns in the irradiated animals. The data imply that different radiation qualities are not equally effective at disrupting performance, with high-energy electrons being the most effective and neutrons the least.  相似文献   

5.
It is shown that in diploid yeast there are significant differences in the extent of irreparable damage after irradiation with X-rays, 60Co-gamma-rays and 30 MeV electrons. At extremely low dose rates, 60Co-gamma-rays were found to produce almost no irreparable damage at least up to 1200 Gy. X-rays, however, at the same low dose rate caused irreparable damage in the same dose range yielding a surviving fraction of 0.25 at 1200 Gy. For irradiations at high dose rate followed by liquid holding recovery the relative biological effectiveness of X-rays amounted to at least 4 for absorbed doses of up to 1000 Gy. With 30 MeV electrons at high dose rates an accumulation of sublethal and potentially lethal damage resulting in irreparable damage occurred above 1000 Gy. It is suggested that irreparable damage in yeast is due to a cooperative effect of neighbouring track ends.  相似文献   

6.

Effects of gamma and X-ray treatments were studied on three varieties of Coffea arabica (Kent, Mundo Novo and Geisha) to determine their radiosensitivity and relative biological effects. The coffee varieties seeds were subjected to 0, 50, 100, 150, 200 and 400 Gy of gamma and X-rays from Cobalt 60 (60Co) source irradiation. The irradiated seeds were pre-germinated in Petri dishes placed in a germination chamber, whilst some were sown in the greenhouse for germination studies. Data were collected on germination date and rate, root and hypocotyl length to determine the relative biological effectiveness of treatments and the optimum dose. The results showed varieties responding differently to the irradiations and doses. There was a decrease in germination with increasing doses of the irradiation. The X-ray-treated seeds had less germination percentage and seedling vigour measured at 28 days after treatment compared to the gamma-irradiated seeds. The irradiation effects on germination suggest that lower doses of X-rays give the same Relative Biological Effects as higher gamma doses for both growth chamber and greenhouse germination for Geisha at LD50, where the effects were similar for the two irradiations. Whereas 50–100 Gy stimulated germination and seedling vigour, 150 Gy adversely affected germination and no germination occurred at 200–400 Gy. The study concluded that all the coffee varieties evaluated are sensitive to gamma and X-ray irradiation in terms of germination, seedling vigour and biological effects with an optimum dose of 50–100 Gy. Therefore, both gamma and X-rays could be utilized in a future mutational breeding programme for coffee seedlings.

  相似文献   

7.
Although the importance of radiation-induced adaptive response has been recognized in human health, risk assessment and clinical application, the phenomenon has not been understood well in terms of survival of animals. To examine this aspect Swiss albino mice were irradiated with different doses (2–10 Gy) at 0015 Gy/s dose rate and observed on a regular basis for 30 days. Since almost 50% lethality was seen with 8 Gy, it was selected as the challenging dose for further studies. Irradiation of mice with conditioning doses (0.25 or 0.5 Gy) and subsequent exposure to 8 Gy caused significant increase in the survival of mice compared to irradiated control. The splitting of challenging dose did not influence the efficiency of conditioning doses (0.25 Gy and 0.5 Gy) to induce an adaptive response. However conditioning doses given in fractions (0.25 Gy + 0.25 Gy) or (0.5 Gy + 0.5 Gy) were able to modulate the response of challenging dose of 8 Gy. These results clearly showed the occurrence of adaptive response in terms of survival of animals. The conditioning dose given in small fractions seemed to be more effective. The findings have been discussed from a mechanistic point of view. The possible biological implications, potential medical benefits, uncertainties and controversies related to adaptive response have also been addressed  相似文献   

8.
An experiment sponsored by the International Atomic Energy Agency was undertaken to compare dose estimation by cytogenetic analysis on aliquots of samples of irradiated blood sent by air to participating laboratories. Accidental acute whole-body irradiations to 0.7 and 2.34 Gy and half-body irradiations to 3.5 Gy were simulated with X- and gamma-rays. For the partial irradiations the size of the irradiated fraction and its dose were estimated by the Qdr and contaminated Poisson techniques. Each laboratory's in vitro dose-response data were fitted to the quadratic model by the iteratively reweighted least squares method. Interlaboratory variations in dose-response curves, and in the aberration yields and dose estimates for the simulated accidents were noted. However, in general, most participants consistently obtained results acceptably close to the true values.  相似文献   

9.
The RBE of the new MIT fission converter epithermal neutron capture therapy (NCT) beam has been determined using intestinal crypt regeneration in mice as the reference biological system. Female BALB/c mice were positioned separately at depths of 2.5 and 9.7 cm in a Lucite phantom where the measured total absorbed dose rates were 0.45 and 0.17 Gy/ min, respectively, and irradiated to the whole body with no boron present. The gamma-ray (low-LET) contributions to the total absorbed dose (low- + high-LET dose components) were 77% (2.5 cm) and 90% (9.7 cm), respectively. Control irradiations were performed with the same batch of animals using 6 MV photons at a dose rate of 0.83 Gy/min as the reference radiation. The data were consistent with there being a single RBE for each NCT beam relative to the reference 6 MV photon beam. Fitting the data according to the LQ model, the RBEs of the NCT beams were estimated as 1.50 +/- 0.04 and 1.03 +/- 0.03 at depths of 2.5 and 9.7 cm, respectively. An alternative parameterization of the LQ model considering the proportion of the high- and low-LET dose components yielded RBE values at a survival level corresponding to 20 crypts (16.7%) of 5.2 +/- 0.6 and 4.0 +/- 0.7 for the high-LET component (neutrons) at 2.5 and 9.7 cm, respectively. The two estimates are significantly different (P = 0.016). There was also some evidence to suggest that the shapes of the curves do differ somewhat for the different radiation sources. These discrepancies could be ascribed to differences in the mechanism of action, to dose-rate effects, or, more likely, to differential sampling of a more complex dose-response relationship.  相似文献   

10.
The effectiveness of radon-daughter inhalation and irradiation with fission neutrons and gamma rays in the induction of lung carcinomas in Sprague-Dawley rats at low doses is compared. Earlier reports which compared radon-daughter inhalations and neutron irradiations over a wider range of doses were based on dosimetry for the radon-daughter inhalations which has recently been found to be faulty. In the present analysis, low-dose experiments were designed to derive revised equivalence ratios between radon-daughter exposures, and fission neutron or gamma irradiations. The equivalence is approximately 15 working level months (WLM) of radon daughters to 10 mGy of neutrons (the earlier value was 30 WLM to 10 mGy). The relative biological effectiveness (RBE) of neutrons is 50 or more at a gamma-ray dose of 1 Gy. In these experiments with low doses and exposures, the lifetime incidences can be estimated from the raw incidences, while the derivation of the time dependence of the prevalence is essential for the estimation of RBE values and equivalence ratios.  相似文献   

11.
The eyes of Sprague-Dawley rats were irradiated with doses of 2.5-10 Gy 250-kVp X rays, 1.25-2.25 Gy fission-spectrum neutrons (approximately 0.85 MeV), or 0.1-2.0 Gy 600-MeV/A 56Fe particles. Lens opacifications were evaluated for 51-61 weeks following X and neutron irradiations and for 87 weeks following X and 56Fe-particle irradiations. Average stage of opacification was determined relative to time after irradiation, and the time required for 50% of the irradiated lenses to achieve various stages (T50) was determined as a function of radiation dose. Data from two experiments were combined in dose-effect curves as T50 experimental values taken as percentages of the respective T50 control values (T50-% control). Simple exponential curves best describe dose responsiveness for both high-LET radiations. For X rays, a shallow dose-effect relationship (shoulder) up to 4.5 Gy was followed at higher doses by a steeper exponential dose-effect relationship. As a consequence, RBE values for the high-LET radiations are dose dependent. Dose-effect curves for cataracts were compared to those for mitotic abnormalities observed when quiescent lens epithelial cells were stimulated mechanically to proliferate at various intervals after irradiation. Neutrons were about 1.6-1.8 times more effective than 56Fe particles for inducing both cataracts and mitotic abnormalities. For stage 1 and 2 cataracts, the X-ray Dq was 10-fold greater and the D0 was similar to those for mitotic abnormalities initially expressed after irradiation.  相似文献   

12.
The adaptive response is an important phenomenon in radiobiology. A study of the conditions essential for the induction of an adaptive response is of critical importance to understanding the novel biological defense mechanisms against the hazardous effects of radiation. In our previous studies, the specific dose and timing of radiation for induction of an adaptive response were studied in ICR mouse fetuses. We found that exposure of the fetuses on embryonic day 11 to a priming dose of 0.3 Gy significantly suppressed prenatal death and malformation induced by a challenging dose of radiation on embryonic day 12. Since a significant dose-rate effect has been observed in a variety of radiobiological phenomena, the effect of dose rate on the effectiveness of induction of an adaptive response by a priming dose of 0.3 Gy administered to fetuses on embryonic day 11 was investigated over the range from 0.06 to 5.0 Gy/min. The occurrence of apoptosis in limb buds, incidences of prenatal death and digital defects, and postnatal mortality induced by a challenging dose of 3.5 Gy given at 1.8 Gy/min to the fetuses on embryonic day 12 were the biological end points examined. Unexpectedly, effective induction of an adaptive response was observed within two dose-rate ranges for the same dose of priming radiation, from 0.18 to 0.98 Gy/ min and from 3.5 to 4.6 Gy/min, for reduction of the detrimental effect induced by a challenging dose of 3.5 Gy. In contrast, when the priming irradiation was delivered at a dose rate outside these two ranges, no protective effect was observed, and at some dose rates elevation of detrimental effects was observed. In general, neither a normal nor a reverse dose- rate effect was found in the dose-rate range tested. These results clearly indicated that the dose rate at which the priming irradiation was delivered played a crucial role in the induction of an adaptive response. This paper provides the first evidence for the existence of two dose-rate ranges for the same dose of priming radiation to successfully induce an adaptive response in mouse fetuses.  相似文献   

13.
The findings of Hill et al. (1984) on the greatly enhanced transformation frequencies at very low dose rates of fission neutrons induced us to perform an analogous study with alpha-particles at comparable dose rates. Transformation frequencies were determined with gamma-rays at high dose rate (0.5 Gy/min), and with alpha-particles at high (0.2 Gy/min) and at low dose rates (0.83-2.5 mGy/min) in the C3H 10T1/2 cell system. alpha-particles were substantially more effective than gamma-rays, both for cell inactivation and for neoplastic transformation at high and low dose rates. The relative biological effectiveness (RBE) for cell inactivation and for neoplastic transformation was of similar magnitude, and ranged from about 3 at an alpha-particle dose of 2 Gy to values of the order of 10 at 0.25 Gy. In contrast to the experiments of Hill et al. (1984) with fission neutrons, no increased transformation frequencies were observed when the alpha-particle dose was protracted over several hours.  相似文献   

14.
To investigate the potential efficacy of fission neutrons from a fast-neutron reactor for the treatment of radioresistant tumors, the relative biological effectiveness (RBE) and tolerance dose of fission neutrons in canine skin were determined. The forelimbs of 34 healthy mongrel dogs received a single dose of fission neutrons (5.6, 6.8, 8.2, 9.6 or 11 Gy) or 137Cs gamma rays (10, 15, 20, 25 or 30 Gy). Based on observations of radiodermatitis for each radiation, the single-fraction RBE of fission neutrons in the sixth month was calculated as approximately 3. The tolerance doses of fission neutrons and gamma rays, defined as the highest doses giving no moist desquamation on the irradiated skin in the recovery phase, were estimated as 7.6 Gy and 20 Gy, respectively. The tolerance dose of 7.6 Gy of fission neutrons included 5.0 Gy of fast neutrons possessing high anti-tumor effects and 1.4 x 10(12) n/cm2 of thermal neutrons, which could be applicable to neutron capture therapy (NCT). The combination of fast-neutron therapy and NCT using a fast-neutron reactor might be useful for the treatment of radioresistant tumors.  相似文献   

15.
This investigation was designed to determine the relative biological effectiveness (RBE) of an epithermal neutron beam (FiR 1 beam) using the brains of dogs. The FiR 1 beam was developed for the treatment of patients with glioma using boron neutron capture therapy. Comparisons were made between the effects of whole-brain irradiation with epithermal neutrons and 6 MV photons. For irradiations with epithermal neutrons, three dose groups were used, 9.4 +/- 0.1, 10.2 +/- 0.1 and 11.5 +/- 0.2 Gy. These physical doses were given as a single exposure and are quoted at the 90% isodose. Four groups of five dogs were irradiated with single doses of 10, 12, 14 or 16 Gy of 6 MV photons to the 100% isodose. Different reference isodoses were used to obtain the most comparable dose distribution in the brain for the two different irradiation modalities. Sequential magnetic resonance images (MRI) were taken for 77-115 weeks after irradiation to detect changes in the brain. Dose-effect relationships were established for changes in the brain as detected either by MRI or by subsequent gross morphology and histology. The doses that caused a specified response in 50% of the animals (ED(50)) were calculated from these dose-effect curves for each end point, and these values were used to calculate the RBE values for the different end points. The RBE values for the FiR 1 beam, based on changes observed on MRI, were in the range 1.2-1.3. For microscopic and gross pathological lesions, the values were in the range 1.2-1.4. The corresponding RBE values for the MRI and pathological end points for the high-LET components (protons from nitrogen capture and recoil protons from fast neutrons) were in the ranges 3.5-4.0 and 3.4-4.4, respectively. This assumed a dose-rate reduction factor of 0.6 for the low-dose-rate gamma-ray component of this beam. Finally, a comparison was made between experimentally derived photon doses, for a specified end point, with calculated photon equivalent doses, which were obtained using the weighting factors for clinical studies on the epithermal neutron beam on the Brookhaven Medical Research Reactor (BNL) in New York. This indicated that the radiation-induced lesions seen in the present study were, on average, detected at a 12% lower photon dose than predicted by the use of the BNL clinical weighting factors. This indicates the need for caution in the extrapolation of results from one reactor-based epithermal neutron beam to another.  相似文献   

16.
Pulsed-dose-rate regimens are an attractive alternative to continuous low-dose-rate brachytherapy. However, apart from data obtained from modeling, only a few in vitro results are available for comparing the biological effectiveness of both modalities. Cells of two human cell lines with survival fractions of 80% (RT112) and 10% (HX142) after a single dose of 2 Gy and with different halftimes for split-dose recovery and low-dose recovery were used. The cells were irradiated with a continuous low dose rate (80 cGy per hour) or with pulsed dose rate. Two different pulsed dose rates were tested: 4.25 Gy/h and 63 Gy/h. The effects of dose per pulse and the length of the interval between the pulses were investigated while keeping the overall treatment time constant. Survival after low-dose-rate irradiation was indistinguishable from that after pulses of 4.25 Gy/h in cells of both cell lines. Survival decreased with increasing dose per pulse. When the dose rate during the pulses was increased, survival decreased even further. This effect was most pronounced for the radiosensitive HX142 cells. In clinical pulsed-dose-rate brachytherapy, iridium sources move stepwise through the implant and deliver pulses at a high dose rate locally. These high-dose-rate pulses produce greater biological effectiveness compared to continuous low dose rate; this should be taken into account.  相似文献   

17.
Selective irradiation of the vasculature of the rat spinal cord was used in this study, which was designed specifically to address the question as to whether it is the endothelial cell or the glial progenitor cell that is the target responsible for late white matter necrosis in the CNS. Selective irradiation of the vascular endothelium was achieved by the intraperitoneal (ip) administration of a boron compound known as BSH (Na(2)B(12)H(11)SH), followed by local irradiation with thermal neutrons. The blood-brain barrier is known to exclude BSH from the CNS parenchyma. Thirty minutes after the ip injection of BSH, the boron concentration in blood was 100 microg (10)B/ g, while that in the CNS parenchyma was below the detection limit of the boron analysis system, <1 microg (10)B/g. An ex vivo clonogenic assay of the O2A (oligodendrocyte-type 2 astrocyte) glial progenitor cell survival was performed 1 week after irradiation and at various times during the latent period before white matter necrosis in the spinal cord resulted in myelopathy. One week after 4.5 Gy of thermal neutron irradiation alone (approximately one-third of the dose required to produce a 50% incidence of radiation myelopathy), the average glial progenitor cell surviving fraction was 0.03. The surviving fraction of glial progenitor cells after a thermal neutron irradiation with BSH for a comparable effect was 0.46. The high level of glial progenitor cell survival after irradiation in the presence of BSH clearly reflects the lower dose delivered to the parenchyma due to the complete exclusion of BSH by the blood-brain barrier. The intermediate response of glial progenitor cells after irradiation with thermal neutrons in the presence of a boron compound known as BPA (p-dihydroxyboryl-phenylalanine), again for a dose that represents one-third the ED(50) for radiation-induced myelopathy, reflects the differential partition of boron-10 between blood and CNS parenchyma for this compound, which crosses the blood-brain barrier, at the time of irradiation. The large differences in glial progenitor survival seen 1 week after irradiation were also maintained during the 4-5-month latent period before the development of radiation myelopathy, due to selective white matter necrosis, after irradiation with doses that would produce a high incidence of radiation myelopathy. Glial progenitor survival was similar to control values at 100 days after irradiation with a dose of thermal neutrons in the presence of BSH, significantly greater than the ED(100), shortly before the normal time of onset of myelopathy. In contrast, glial progenitor survival was less than 1% of control levels after irradiation with 15 Gy of thermal neutrons alone. This dose of thermal neutrons represents the approximate ED(90-100) for myelopathy. The response to irradiation with an equivalent dose of X rays (ED(90): 23 Gy) was intermediate between these extremes as it was to thermal neutrons in the presence of BPA at a slightly lower dose equivalent to the approximate ED(60) for radiation myelopathy. The conclusions from these studies, performed at dose levels approximately iso-effective for radiation-induced myelopathy as a consequence of white matter necrosis, were that the large differences observed in glial progenitor survival were directly related to the dose distribution in the parenchyma. These observations clearly indicate the relative importance of the dose to the vascular endothelium as the primary event leading to white matter necrosis.  相似文献   

18.
  Growing hair follicles with their rapid cell proliferation would be expected to be sensitive organs to cytotoxic agents such as radiation. Various abnormalities in the hair and hair follicles have been reported in the past. Changes in the number of cells in the newly forming hair cortex have been shown in the mouse to be one of the more sensitive assays for radiation effects, and this approach could provide a basis for a biological dosimeter. Here we show for the first time using hair cortex cell counts some preliminary data indicating that the number of cell nuclei in a unit of length (140 μm) of the cortex of human hairs from the chest and scalp of patients undergoing fractionated radiotherapy falls significantly (P = 0.005) by 5%–10% 3 days after the first dose in a fractionated sequence of irradiations. The first dose was delivered on a Friday, and no further exposures were delivered until after the hair sample was taken on the 3rd day (Monday). No significant effect of radiation dose could be detected over the available, limited range of doses studied (5 – 6.5 Gy with one exit dose sample at 2.6 Gy). Also, the width varies from hair to hair. If the width of the hair is taken into account and the cortical nuclei counts are normalised to the width of each hair, the effects seen at day 3 become slightly more significant (P = 0.002), and those at day 5 also become significant (P = 0.012). Samples taken on the 5th day after the first (Friday) exposure were also 2 days after the second exposure and 1 day after the third exposure. However, little expression of damage attributable to the 2nd and 3rd exposures was anticipated since their effects would take some time to be expressed in the cortical region examined, which is some distance from the proliferative region of the follicle. Received: 28 September 1995 / Accepted in revised form: 23 February 1996  相似文献   

19.
The radioadaptive response and the bystander effect represent important phenomena in radiobiology that have an impact on novel biological response mechanisms and risk estimates. Micromass cultures of limb bud cells provide an in vitro cellular maturation system in which the progression of cell proliferation and differentiation parallels that in vivo. This paper presents for the first time evidence for the correlation and interaction in a micromass culture system between the radioadaptive response and the bystander effect. A radioadaptive response was induced in limb bud cells of embryonic day 11 ICR mice. Conditioning irradiation of the embryonic day 11 cells with 0.3 Gy resulted in a significant protective effect against the occurrence of apoptosis, inhibition of cell proliferation, and differentiation induced by a challenging dose of 5 Gy given the next day. Both protective and detrimental bystander effects were observed; namely, irradiating 50% of the embryonic day 11 cells with 0.3 Gy led to a successful induction of the protective effect, and irradiating 70% of the embryonic day 12 cells with 5 Gy produced a detrimental effect comparable to that seen when all the cells were irradiated. Further, the bystander effect was markedly decreased by pretreatment of the cells with an inhibitor to block the gap junction-mediated intercellular communication. These results indicate that the bystander effect plays an important role in both the induction of a protective effect by the conditioning dose and the detrimental effect of the challenge irradiation. Gap junction-mediated intercellular communication was suggested to be involved in the induction of the bystander effect.  相似文献   

20.
Antinociception of imipramine (I) and its effect in combination with fentanyl (F) was evaluated in rabbits using electrically-induced lick chew responses via tooth pulp stimulation as the model of nociception. Acute i.v. injections of I elicited a graded dose response comparable to i.v. morphine (M) with I ED 50 = 4.35 mg/kg (2.31-8.14, 95% CL) and M ED 50 = 1.81 mg/kg (1.11-3.90), with no differences in the slopes between the two curves. The lethal dose of I was 10 mg/kg. An i.v. dose of I twice the ED 50 elicited an antinociceptive effect of more than 50% maximum possible effect (MPE) for 90 minutes with peak effect of 82% MPE occurring at 15 minutes. These effects of I were not reversed by a morphine-reversal dose of naloxone (0.1 mg/kg i.v.) but were reversed with a ten fold dose of naloxone. F ED 50 values (mcg/kg) were lowered from 11.35 to 2.70, 0.74 and 0.33 with increasing pretreatment doses of I (1.0, 2.1 and 3.2 mg/kg). These magnitudes of potency increases of F were 4.2, 15.3 and 34.4 fold respectively. A single i.v. ED 50 dose of I extended the time to 50% MPE of an ED 90 dose of F from 26 minutes to 77 minutes; of a 2 X ED 50 dose of F from 17 minutes to 28 minutes. Data points for three different combinations of I and F fell significantly within the synergistic field of an ED 50 isobologram and a polynomial equation described the curve best fitting the data points. F alone (i.v. ED 50 dose) increased the PaCO2 values to 74% above controls and three different combinations with I showed no increases in PaCO2 values above controls. I alone did not significantly cause any change in PaCO2 values from controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号