首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S B Hwang  M M Lai 《Journal of virology》1993,67(12):7659-7662
Hepatitis delta antigen (HDAg) consists of two protein species of 195 and 214 amino acids, respectively, which are identical in sequence except that the large HDAg has additional 19 amino acids at its C terminus and is prenylated. Previous studies have shown that the large HDAg and the surface antigen of hepatitis B virus (HBsAg) together can form empty hepatitis delta virus (HDV) particles. To understand the molecular mechanism of HDV virion morphogenesis, we investigated the possible direct protein-protein interaction between HDAg and HBsAg. We constructed recombinant baculoviruses expressing the major form of HBsAg and various mutant HDAgs and used these proteins for far-Western protein binding assays. We demonstrated that HBsAg interacted specifically with the large HDAg but not with the small HDAg. Using mutant HDAgs which have defective or aberrant prenylation, we showed that this interaction required isoprenylates on the cysteine residue of the C terminus of the large HDAg. Isoprenylation alone, without the remainder of the C-terminal amino acids of the large HDAg, was insufficient to mediate interaction with HBsAg. This study demonstrates a novel role of prenylates in HDV virion assembly.  相似文献   

2.
Relating structure to function in the hepatitis delta virus antigen.   总被引:20,自引:17,他引:3       下载免费PDF全文
Hepatitis delta virus expresses two forms of a single protein, the small (delta Ag-S) and large (delta Ag-L) antigens, which are identical except for an additional 19 residues present at the C terminus of delta Ag-L. While delta Ag-S is required to promote genome replication, delta Ag-L potently inhibits this process and also facilitates packaging of the viral genome by envelope proteins of the helper virus (hepatitis B virus). Regions within the antigens responsible for nuclear localization, RNA binding, and dimerization have been identified, yet it is not clear how these particular activities contribute to the ultimate replication and packaging phenotypes. Here we report the following findings. (i) Although the removal of the nuclear localization signal from either antigen resulted in significant cytoplasmic accumulation, both proteins still had access to the nucleus. As a consequence, no functional defect was observed with either mutant. (ii) The RNA-binding domain, although necessary for delta Ag-S function, could be deleted from delta Ag-L without compromising its ability to either inhibit replication or promote packaging. (iii) In contrast, the coiled-coil dimerization domain was required for both the activation of replication by delta Ag-S and the inhibition of replication by delta Ag-L. This region, with an additional 20 amino acids C-terminal to it, was necessary and sufficient to potently inhibit replication by interacting with the small antigen. (iv) The packaging property of delta Ag-L required a C-terminal Pro/Gly-rich region which is hypothesized to interact with the hepatitis B virus envelope proteins during the assembly process.  相似文献   

3.
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. The RNA genome of HDV encodes two proteins, the small delta antigen and the large delta antigen, which differ only with the latter having an additional 19 amino acids at the C-terminus. Previously, we have shown that dAg24-50, a synthetic peptide corresponding to residues 24-50 of the N-terminal leucine-repeat region of hepatitis delta antigen, binds to the viral RNA and forms an alpha-helical conformation in TFE-containing solution. However, it exhibited low alpha-helicity (less than 5%) in the absence of TFE. In order to obtain biologically active delta antigen peptides with higher structural stability in solution, an N-capping 21-residue polypeptide corresponding to residues 24-38 of hepatitis delta antigen (dAg(Cap24-38am)) was synthesized and, surprisingly, its solution structure was found to be a stable alpha-helix (64%) by circular dichroism and 1H NMR techniques. Moreover, the structure of the capping box shows the characteristic L-shaped bend perpendicular to the helix axis. This structural knowledge provides a molecular basis for understanding the role of the N-terminal leucine-repeat region of hepatitis delta antigen and has a significant potential for the development of diagnostic and therapeutic methods for HDV.  相似文献   

4.
I J Lin  Y C Lou  M T Pai  H N Wu  J W Cheng 《Proteins》1999,37(1):121-129
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. The RNA genome of HDV encodes two proteins: the small delta antigen and the large delta antigen. The two proteins resemble each other except for the presence of an additional 19 amino acids at the C terminus of the latter species. We have found that the N-terminal leucine-repeat region of hepatitis delta antigen (HDAg) binds to the autolytic domain of HDV genomic RNA and attenuates its autolytic activity. A 27-residue polypeptide corresponding to residues 24-50 of HDAg, designated dAg(24-50), was synthesized, and its solution structure was found to be an alpha-helix by circular dichroism and (1)H-nuclear magnetic resonance (NMR) techniques. Binding affinity of dAg(24-50) with HDV genomic RNA was found to increase with its alpha-helical content, and it was further confirmed by modifying its N- and C-terminal groups. Furthermore, the absence of RNA binding activity in the mutant peptides, dAgM(24-50am) and dAgM(Ac24-50am), in which Lys38, Lys39, and Lys40 were changed to Glu, indicates a possible involvement of these residues in their binding activity. Structural knowledge of the N-terminal leucine-repeat region of HDAg thus provides a molecular basis for the understanding of its role in the interaction with RNA. Proteins 1999;37:121-129.  相似文献   

5.
It has previously been shown that human hepatitis virus delta antigen has an RNA-binding activity (Chang et al., J. Virol. 62:2403-2410, 1988). In the present study, the specificity of such an RNA-protein interaction was demonstrated by expressing various domains of the delta antigen in Escherichia coli as TrpE fusion proteins and testing their RNA-binding activities in a Northwestern protein-RNA immunoblot assay and RNA gel mobility shift assay. Hepatitis delta virus (HDV) RNA bound specifically to the delta antigen in the presence of an excess amount of unrelated RNAs and a relatively high salt concentration. Both genome- and antigenome-sense HDV RNAs and at least two different regions of HDV genomic RNA bound to the delta antigen. Surprisingly, these two different regions of HDV genomic RNA could compete with each other for delta antigen binding, although they do not have common nucleotide sequences. In contrast, this binding could not be competed with by other viral or cellular RNA. Since both the genomic and antigenomic HDV RNAs had strong intramolecular complementary sequences, these results suggest that the binding of delta antigen is probably specific for a secondary structure unique to the HDV RNA. By expressing different subdomains of the delta antigen, we found that the middle one-third of delta antigen was responsible for binding HDV RNA. Neither the N-terminal nor the C-terminal domain bound HDV RNA. Binding between the delta antigen and HDV RNA was also demonstrated within the HDV particles isolated from the plasma of a human delta hepatitis patient. This in vivo binding resisted treatment with 0.1% sodium dodecyl sulfate and 0.5% Nonidet P-40. In addition, we showed that the antiserum from a human patient with delta hepatitis reacted with all three subdomains of the delta antigen, indicating that all of the domains are immunogenic in vivo. These studies demonstrated the specific interaction between delta antigen and HDV RNA.  相似文献   

6.
Hepatitis delta virus requires a helper function from hepatitis B virus for packaging, release, and infection of hepatocytes. The assembly of large delta antigen (HDAg) is mediated by copackaging with the small surface antigen of hepatitis B virus (HBsAg), and the assembly of small HDAg requires interactions with large HDAg. To examine the molecular mechanisms by which small HBsAg, large HDAg, and small HDAg interact, we have established a virion assembly system in COS7 cells by cotransfecting plasmids encoding the small HBsAg, the small HDAg, and large HDAg mutants. Results indicate that sequences within the C-terminal 19-amino-acid domain flanking the Cxxx isoprenylation motif are important for the assembly of large HDAg. In addition, a large HDAg mutant bearing extra sequences separating the C-terminal 19-amino-acid domain from the common regions of the small and large HDAgs is capable, like the wild-type large HDAg, of copackaging with small HBsAg. The ability of assembly is also demonstrated for a large HDAg mutant from which nuclear localization signals have been removed. Furthermore, a cryptic signal within the N-terminal 50 amino acid residues other than the putative N-terminal coiled-coil structure and a subdomain between amino acid residues 50 and 65 of the large HDAg are important for the assembly of small HDAg as well as the trans-dominant negative regulation of large HDAg in hepatitis delta virus replication.  相似文献   

7.
Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus, as it requires hepatitis B virus for virion production and transmission. We have previously demonstrated that sequences within the C-terminal 19-amino acid domain flanking the isoprenylation motif of the large hepatitis delta antigen (HDAg-L) are important for virion assembly. In this study, site-directed mutagenesis and immunofluorescence staining demonstrated that in the absence of hepatitis B virus surface antigen (HBsAg), the wild-type HDAg-L was localized in the nuclei of transfected COS7 cells. Nevertheless, in the presence of HBsAg, the HDAg-L became both nuclei- and cytoplasm-distributed in about half of the cells. An HDAg-L mutant with a substitution of Pro-205 to alanine could neither form HDV-like particles nor shift the subcellular localization in the presence of HBsAg. In addition, nuclear trafficking of HDAg-L in heterokaryons indicated that HDAg-L is a nucleocytoplasmic shuttling protein. A proline-rich HDAg peptide spanning amino acid residues 198 to 210, designated NES(HDAg-L), can function as a nuclear export signal (NES) in Xenopus oocytes. Pro-205 is critical for the NES function. Furthermore, assembly of HDV is insensitive to leptomycin B, indicating that the NES(HDAg-L) directs nuclear export of HDAg-L to the cytoplasm via a chromosome region maintenance 1-independent pathway.  相似文献   

8.
Huang C  Chang SC  Yu IC  Tsay YG  Chang MF 《Journal of virology》2007,81(11):5985-5994
Clathrin-mediated endocytosis is a common pathway for viral entry, but little is known about the direct association of viral protein with clathrin in the cytoplasm. In this study, a putative clathrin box known to be conserved in clathrin adaptors was identified at the C terminus of the large hepatitis delta antigen (HDAg-L). Similar to clathrin adaptors, HDAg-L directly interacted with the N terminus of the clathrin heavy chain through the clathrin box. HDAg-L is a nucleocytoplasmic shuttle protein important for the assembly of hepatitis delta virus (HDV). Here, we demonstrated that brefeldin A and wortmannin, inhibitors of clathrin-mediated exocytosis and endosomal trafficking, respectively, specifically blocked HDV assembly but had no effect on the assembly of the small surface antigen of hepatitis B virus. In addition, cytoplasm-localized HDAg-L inhibited the clathrin-mediated endocytosis of transferrin and the degradation of epidermal growth factor receptor. These results indicate that HDAg-L is a new clathrin adaptor-like protein, and it may be involved in the maturation and pathogenesis of HDV coinfection or superinfection with hepatitis B virus through interaction with clathrin.  相似文献   

9.
The large hepatitis delta antigen (HDAg-L) mediates hepatitis delta virus (HDV) assembly and inhibits HDV RNA replication. Farnesylation of the cysteine residue within the HDAg-L carboxyl terminus is required for both functions. Here, HDAg-L proteins from different HDV genotypes and genotype chimeric proteins were analyzed for their ability to incorporate into virus-like particles (VLPs). Observed differences in efficiency of VLP incorporation could be attributed to genotype-specific differences within the HDAg-L carboxyl terminus. Using a novel assay to quantify the extent of HDAg-L farnesylation, we found that genotype 3 HDAg-L was inefficiently farnesylated when expressed in the absence of the small hepatitis delta antigen (HDAg-S). However, as the intracellular ratio of HDAg-S to HDAg-L was increased, so too was the extent of HDAg-L farnesylation for all three genotypes. Single point mutations within the carboxyl terminus of HDAg-L were screened, and three mutants that severely inhibited assembly without affecting farnesylation were identified. The observed assembly defects persisted under conditions where the mutants were known to have access to the site of VLP assembly. Therefore, the corresponding residues within the wild-type protein are likely required for direct interaction with viral envelope proteins. Finally, it was observed that when HDAg-S was artificially myristoylated, it could efficiently inhibit HDV RNA replication. Hence, a general association with membranes enables HDAg to inhibit replication. In contrast, although myristoylated HDAg-S was incorporated into VLPs far more efficiently than HDAg-S or nonfarnesylated HDAg-L, it was incorporated far less efficiently than wild-type HDAg-L; thus, farnesylation was required for efficient assembly.  相似文献   

10.
On the basis of the complete nucleotide sequence of the single-stranded, covalently closed circular hepatitis delta virus RNA genome (K.-S. Wang, Q.-L. Choo, A. J. Weiner, J.-H. Ou, R. C. Najarian, R. M. Thayer, G. T. Mullenbach, K. J. Denniston, J. L. Gerin, and M. Houghton, Nature [London] 323:508-514, 1986 [Author's correction, 328:456, 1987]), five long open reading frames (ORFs) encoding polypeptides containing a methionine proximal to the amino terminus were expressed in bacteria. Only polypeptides encoded by the antigenomic ORF5 cross-reacted with antisera obtained from patients with hepatitis delta virus infections. Immunological analysis of viral extracts and the recombinant ORF5 polypeptides synthesized in bacteria and yeast cells revealed that ORF5 encodes the immunogenic epitope(s) shared by both hepatitis delta viral polypeptides p27 delta and p24 delta and probably represents the complete structural gene for p27 delta and p24 delta. We also present evidence that ORF5 encodes the hepatitis delta antigen, an antigen originally found in the nuclei of hepatocytes of infected individuals (M. Rizzetto, M. G. Canese, S. Arico, O. Crivelli, F. Bonino, C. G. Trepo, and G. Verme, Gut 18:997-1003, 1977). A comparison of the primary structure of the predicted hepatitis delta antigen polypeptides with that of the core antigen of the hepatitis B virus shows that these polypeptides are very dissimilar.  相似文献   

11.
M Chao  S Y Hsieh    J Taylor 《Journal of virology》1990,64(10):5066-5069
The replication of the RNA genome of hepatitis delta virus is greatly facilitated by the presence of the only known virus-coded protein, the delta antigen. Most, if not all, infections are characterized by the presence of two electrophoretic forms of the delta antigen. These forms correspond to polypeptide lengths of 195 and 214 amino acids which are encoded by genomes with different nucleotide sequences. We used cDNA transfections to investigate the functions of these two forms of the delta antigen. We found that only the small form of delta antigen supported hepatitis delta virus genome replication and that the large form acted as a dominant negative repressor of such replication. This inhibition was potent. For example, the amount of genome replication was reduced eightfold when as little as 10% of the delta antigen was present as the large form. One interpretation of our results is that the delta antigen normally functions as part of a multimeric structure. In addition, our data suggest that synthesis of the large form, either during genome replication in cultured cells or even during infection in animals, may suppress delta replication, possibly leading to a self-limiting infection.  相似文献   

12.
M Y Kuo  M Chao    J Taylor 《Journal of virology》1989,63(5):1945-1950
Beginning with three partial cDNA clones of the RNA genome of human hepatitis delta virus (HDV), we assembled the complete 1,679-base sequence on a single molecule and then inserted a trimer of this into plasmid pSLV, a simian virus 40-based eucaryotic expression vector. This construct was used to transfect both monkey kidney (COS7) and human hepatocellular carcinoma (HuH7) cell lines. In this way we obtained replication of the HDV RNA genome and the appearance, in the nucleoli, of the delta antigen, the only known virus-coded protein. This proved both that the HDV genome could replicate in nonliver as well as liver cells and that there was no requirement for the presence of hepatitis B virus sequences or proteins. When the pSVL construct was made with a dimer of an HDV sequence with a 2-base-pair deletion in the open reading frame, genome replication was reduced at least 40-fold. However, when we cotransfected with a plasmid that expressed the correct delta antigen, the mutated dimer achieved a level of genome replication comparable to that of the nonmutated sequence. We thus conclude that the delta antigen can act in trans and is essential for replication of the HDV genome.  相似文献   

13.
Hepatitis D virus (delta agent) markers were present in 111 (36%) of 308 intravenous drug abusers who were positive for hepatitis B surface antigen (HBsAg), 52 of these having hepatitis D virus antigenaemia. IgM antibody to hepatitis B core antigen (anti-HBc IgM) was present in 92 out of 95 subjects tested, indicating that hepatitis D virus and hepatitis B virus infections had been acquired simultaneously. Hepatitis D virus markers were present in three out of four patients with fulminant hepatitis, and in 80 of 223 (36%) with mild or moderate hepatitis compared with four of 29 (14%) of those who were asymptomatic. These proportional differences were significant (p less than 0.001). Hepatitis D virus markers were present in twice as many patients positive for anti-HBc IgM requiring admission to hospital with acute hepatitis compared with outpatients attending a drug treatment centre. Tests on one patient showed complete disappearance of HBsAg, but hepatitis D antigen (HDAg or delta antigen) and hepatitis B e antigen (HBeAg) were still present in serum samples. All five patients with chronic active hepatitis had hepatitis D antibody (anti-HD) compared with seven of 24 (29%) with chronic persistent hepatitis (p = 0.008). Blocking anti-HD persisted for long periods after simultaneous infections with hepatitis B virus and hepatitis D virus but at lower titres than in patients with chronic liver disease.  相似文献   

14.
15.
The hepatitis delta virus (HDV) genome is a circular, single-stranded, rod-shaped, 1.7-kb RNA that replicates via a rolling-circle mechanism. Viral ribozymes function to cleave replication intermediates which are then ligated to generate the circular product. HDV expresses two forms of a single protein, the small and large delta antigens (delta Ag-S and delta Ag-L), which associate with viral RNA in a ribonucleoprotein (RNP) structure. While delta Ag-S is required for RNA replication, delta Ag-L inhibits this process but promotes the assembly of the RNP into mature virions. In this study, we have expressed full-length and deleted HDV RNA inside cells to determine the minimal RNA sequences required for self-cleavage, ligation, RNP packaging, and virion assembly and to assess the role of either delta antigen in each of these processes. We report the following findings. (i) The cleavage and ligation reactions did not require either delta antigen and were not inhibited in their presence. (ii) delta Ag-L, in the absence of delta Ag-S, formed an RNP with HDV RNA which could be assembled into secreted virus-like particles. (iii) Full-length HDV RNAs were stabilized in the presence of either delta antigen and accumulated to much higher levels than in their absence. (iv) As few as 348 nucleotides of HDV RNA were competent for circle formation, RNP assembly, and incorporation into virus-like particles. (v) An HDV RNA incapable of folding into the rod-like structure was not packaged by delta Ag-L.  相似文献   

16.
The large hepatitis delta antigen (HDAg) has been found to be essential for the assembly of the hepatitis delta virion. Furthermore, in a cotransfection experiment, the large HDAg itself, without the hepatitis delta virus (HDV) genome and small HDAg, could be packaged into hepatitis B surface antigen (HBsAg) particles. By deletion analysis, it was shown that the amino-terminal leucine zipper domain was dispensable for packaging. The large HDAg could also help in copackaging of the small HDAg into HBsAg particles without the need for HDV RNA. This process was probably mediated through direct interaction of the two HDAgs as a mutated large HDAg whose leucine zipper domain was deleted such that it could not help in copackaging of the small HDAg. This mutated large HDAg did not suppress HDV replication, suggesting that this effect is probably also via protein interaction. These results indicated that functional domains of the large HDAg responsible for packaging with HBsAg particles and for the trans-negative effect on HDV replication can be separated.  相似文献   

17.
IgM antibody against hepatitis B core antigen (IgM anti-HBc), a marker of recent hepatitis B virus infection, was sought by radioimmunoassay in sera diluted 1/4000 from 376 patients presenting to four centres in Italy with acute, apparently type B hepatitis (hepatitis B surface antigen (HBsAg) positive). In 320 patients (85%) a positive IgM anti-HBc test result confirmed that hepatitis was due to primary infection with hepatitis B virus. In the remaining 56 patients absence of the IgM marker indicated that they were previously unrecognised long term carriers of HBsAg. Further serum analysis often showed delta infection and occasionally hepatitis A or cytomegalovirus infection as the true cause of their illness. After six to eight months circulating HBsAg persisted in 38 of 45 patients (84%) without IgM anti-HBc but in only six of 150 patients (4%) with the IgM antibody (p less than 0.0001). A negative IgM anti-HBc test result in patients with acute HBsAg positive hepatitis points to a factor other than hepatitis B virus as the cause of the liver damage and predicts the carriage of HBsAg.  相似文献   

18.
A simple rapid detection of antibody to hepatitis delta virus (anti-HDV) in human serum was developed by using double antigen sandwich ELISA. HDV gene fragment encoding HDAg was isolated from a Chinese patient infected with HDV by RT-PCR, and a high-efficient expression HD-PQE31 strain was constructed with the fragment. We obtained high titer and good quality hepatitis delta virus protein purified by Ni-NTA metal-affinity chromatography, which was identified by Western blot and ELISA, then we set up the double antigen sandwich ELISA for detection of anti-HDV in human serum, and the performance of the sandwich ELISA was evaluated in terms of specificity and sensitivity. Results were: 1) The purified HDAg protein's purity was 90%, and its ELISA titer was 1/100 000. 2) 42 anti-HDV positive sera were detected and showed that the sensitivity of sandwich ELISA was higher than that of competitive ELISA (t=2.44, p<0.01). 3) The inhibitory rates for 2 anti-HDV positive sera by the specific HDAg were 74% and 93% respectively. 4) For the assay of specificity, all 60 samples infected by other hepatitis viruses and 30 normal samples were negative for anti-HDV. These results suggested that the double antigen sandwich ELISA with purified recombinant HDAg showed higher specificity and sensitivity, It can be used in routine laboratories to diagnose the HDV infection.  相似文献   

19.
The genetic origin, structure, and biochemical properties of the delta antigen (HDAg) of a human hepatitis delta virus (HDV) were investigated. A cDNA fragment containing the open reading frame encoding the HDAg was transcribed into RNA and used for in vitro translation in rabbit reticulocyte lysates. The HDAg open reading frame was also inserted into an expression vector containing a simian virus 40 T-antigen promoter and expressed into COS 7 cells. In both systems, a protein species of 26 kilodaltons was synthesized from this open reading frame and could be specifically immunoprecipitated with antisera obtained from patients with delta hepatitis. A similar protein was also synthesized from antigenomic-sense monomeric HDV RNA in both systems, although the efficiency of translation was lower than that of the isolated open reading frame. This protein was found to be phosphorylated at the serine residues. Immunoperoxidase studies with anti-HDV sera demonstrated that the HDAg was expressed mainly in the nuclei of the transfected COS 7 cells. Moreover, the HDAg was shown to bind the genomic RNA of HDV. These studies indicate that HDAg is encoded by the antigenomic-sense RNA of HDV and is a nuclear phosphoprotein associated with an RNA-binding activity.  相似文献   

20.
To evaluate the possibility of producing transducible replication-defective hepadnaviruses, cloned mutant duck hepatitis B virus genomes were tested both for virus antigen production and viral DNA synthesis following transfection into the human hepatoma cell line HuH7. Deletion of a cis-acting 12-nucleotide sequence implicated in viral DNA synthesis, direct repeat 1 (DR1), resulted in the loss of ability to synthesize both mature viral DNA and infectious virus. The delta DR1 mutant, however, produced envelope and core antigens and was shown to provide trans-acting functions required for the assembly of infection-competent particles. Thus, mutants with mutations in viral genes could be rescued as DNA-containing viral particles after cotransfection with delta DR1. The efficiency of rescue was influenced by the site of mutation. A mutant DNA encoding truncated core and envelope proteins not only was poorly rescued but also was able to suppress the production from a wild-type DNA of infectious virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号