首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This study characterizes the interactions of various rat and human lipoproteins with the lipoprotein cell surface receptors of rat and human cells. Iodinated rat very low density lipoproteins (VLDL), rat chylomicron remnants, rat low density lipoproteins (LDL), and rat high density lipoproteins containing predominantly apoprotein E (HDL1) bound to high affinity cell surface receptors of cultured rat fibroblasts and smooth muscle cells. Rat VLDL and chylomicron remnants were most avidly bound; the B-containing LDL and the E-containing HDL1 displayed lesser but similar binding. Rat HDL (d = 1.125 to 1.21) exhibited weak receptor binding; however, after recentrifugation to remove apoprotein E, they were devoid of binding activity. Competitive binding studies at 4 degrees C confirmed these results for normal lipoproteins and indicated that VLDL (B-VLDL), LDL, and HDLc (cholesterol-rich HDL1) isolated from hypercholesterolemic rats had increased affinity for the rat receptors compared with their normal counterparts, the most pronounced change being in the LDL. The cell surface receptor pathway in rat fibroblasts and smooth muscle cells resembled the system described for human fibroblasts as follows: 1) lipoproteins containing either the B or E apoproteins interacted with the receptors; 2) receptor binding activity was abolished by acetoacetylation or reductive methylation of a limited number of lysine residues of the lipoproteins; 3) receptor binding initiated the process of internalization and degradation of the apo-B- and apo-E-containing lipoproteins; 4) the lipoprotein cholesterol was re-esterified as determined by [14C]oleate incorporation into the cellular cholesteryl esters; and 5) receptor-mediated uptake (receptor number) was lipoprotein cholesterol. An important difference between rat and human fibroblasts was the inability of human LDL to interact with the cell surface receptors of rat fibroblasts. Rat lipoproteins did, however, react with human fibroblasts. Furthermore, the rat VLDL were the most avidly bound of the rat lipoproteins to rat fibroblasts. When the direct binding of 125I-VLDL was subjected to Scatchard analysis, the very high affinity of rat VLDL was apparent (Kd = 1 X 10(-11) M). Moreover, compared with data for rat LDL, the data suggested each VLDL particle bound to four to nine lipoprotein receptors. This multiple receptor binding could explain the enhanced binding affinity of the rat VLDL. The Scatchard plot of rat 125I-VLDL revealed a biphasic binding curve in rat and human fibroblast cells and in rat smooth muscle cells, suggesting two populations of rat VLDL. These results indicate that rat cells have a receptor pathway similar to, but not identical with, the LDL pathway of human cells. Since human LDL bind poorly to rat cell receptors on cultured rat fibroblasts and smooth muscle cells, metabolic studies using human lipoproteins in rats must be interpreted cautiously.  相似文献   

2.
Porcine liver membranes are capable of high affinity binding of homologous low density lipoproteins (LDL). Binding is time and temperature dependant and substrate saturable. High affinity binding sites are half saturated at 11 μg/ml lipoprotein-protein. The binding of 125I-LDL is inhibited by unlabelled homologous LDL, very low density lipoproteins (VLDL) and high density lipoproteins (HDL) and also be human LDL and HDL, but not by unrelated proteins tested. The binding and displacement patterns with membranes from several other porcine tissues are similar to those of liver membranes. These results suggest the presence of “lipoprotein binding sites” in liver membranes which recognize structural features common to the lipoproteins and further indicate that liver membranes are not unique in their ability to bind LDL.  相似文献   

3.
The binding characteristics of very-low-density (VLDL), low-density (LDL) and high-density (HDL) lipoprotein fractions to a purified human term placental microvillous membrane preparation were determined. Binding of LDL was saturable with a maximal binding capacity of 270 ng LDL protein per mg of membrane protein. Scatchard analysis revealed the presence of a single population of 3.4 · 1011 sites per mg of membrane protein and a mean affinity constant of 5.8 · 10−9 M. Binding of VLDL was also saturable but the maximal capacity was 4.5-times greater than that of LDL. The Scatchard analysis revealed the presence of 2.1 · 1011 binding sites and an affinity constant nearly one order of magnitude greater than that of LDL. Binding of HDL showed less tendency to saturate. Scatchard analysis showed a similar number of receptor sites to that calculated for VLDL and LDL but the affinity constant for HDL was over 100-fold less than that of VLDL. Self- and cross-inhibition studies of VLDL and LDL binding revealed that VLDL was better at blocking the binding of LDL than was LDL itself. This preferential binding of VLDL suggests that this lipoprotein fraction could be an important source of cholesterol for placental progesterone production.  相似文献   

4.
Apolipoprotein (Apo) D is an important protein produced in many parts of the body. It is necessary for the development and repair of the brain and protection from oxidative stress. The purpose of this study was to investigate the extent to which apoD interacts with lipoproteins in human plasma. By using detergent-free ELISA, we show that immobilized monoclonal antibodies against apoD very efficiently bind to low density lipoprotein (LDL) from plasma; this binding is as equally efficient as binding to an anti-apoB monoclonal antibody. Adding detergent to the plasma inhibited the binding, suggesting that the binding is dependent on the presence of intact lipoprotein particles. Reversing the system by using immobilized anti-apoB revealed that the affinity of apoD for LDL is rather low, suggesting that multiple bindings are needed for a durable connection. Biosensor experiments using purified lipoproteins also showed that purified apoD and high density lipoprotein 3 (HDL3), a lipoprotein fraction rich in apoD, were both able to bind LDL very efficiently, indicating that the HDL3-LDL interaction may be a physiological consequence of the affinity of apoD for LDL. Furthermore, we found that apoD increases the binding of HDL to actively growing T24 bladder carcinoma cells but not to quiescent, contact-inhibited, confluent T24 cells. This result is especially intriguing given that the T24 supernatant only contained detectable levels of apoD after growth inhibition, raising the possibility that alternating the expression of apoD and a putative apoD-receptor could give direction to the flow of lipids. In the current paper, we conclude that apoD mediates binding of HDL to LDL and to growing T24 carcinomas, thereby highlighting the importance of apoD in lipid metabolism.  相似文献   

5.
In order to assess the presence of specific recognition sites for high density lipoprotein (HDL) in vivo, HDL was nitrosylated with tetranitromethane and the decay and liver uptake were compared with that of native HDL. The association of intravenously injected nitrosylated HDL (TNM-HDL) with liver was greatly increased as compared to native HDL. Using a cold cell isolation method, it became evident that the liver endothelial cells were responsible for the increased uptake of the modified HDL. The involvement of the endothelial cells in the uptake of TNM-HDL from the circulation could also be demonstrated morphologically by using the fluorescent dye dioctadecyl-tetramethyl-indocarbocyanine perchlorate (Dil) to label HDL. In vitro competition studies with isolated liver endothelial cells indicated that unlabeled modified HDL and acetylated LDL displaced iodine-labeled TNM-HDL, while no competition was seen with LDL and a slight displacement was seen with unlabeled native HDL. Nonlipoprotein competitors of the scavenger receptor such as fucoidin and polyinosinic acid blocked the interaction of TNM-HDL with the liver endothelial cells. Also the degradation of TNM-HDL was blocked by low concentrations of chloroquine. It can be concluded that a scavenger receptor on liver endothelial cells is involved in the clearance of tetranitromethane-modified HDL, which excludes the possibility of using TNM-HDL in vivo to assess the non-receptor-dependent uptake of HDL. The use of nitrosylated HDL in vitro as a low affinity control is limited to cell types that do not possess scavenger receptors, because cell types with scavenger receptors will recognize and internalize TNM-HDL by a high affinity scavenger pathway.  相似文献   

6.
1. Cockerels fed a cholesterol-supplemented diet experienced a marked elevation of lipoprotein particles of density less than or equal to 1.006 g/ml (VLDL) and a diminution of lipoprotein particles of density 1.02-1.05 g/ml (LDL). 2. Unlike VLDL of some cholesterol-fed animals, cholesterol-fed cockerel VLDL did not display beta-mobility on agarose gel electrophoresis. 3. [125I]LDL and [125I]HDL binding to cockerel liver membranes was not affected by cholesterol feeding. 4. Different lipoprotein types appear to bind to a common site on cockerel liver membranes. 5. The results suggest that liver cells of cockerels may not possess LDL binding sites that are analogous to those of mammalian species.  相似文献   

7.
Further studies have been made of the effects of high density lipoprotein (HDL) on the surface binding, internalization and degradation of 125I-labeled low density lipoprotein (125I-labeled LDL) by cultured normal human fibroblasts. In agreement with earlier studies, during short incubations HDL inhibited the surface binding of 125I-labeled LDL. In contrast, following prolonged incubations 125I-labeled LDL binding was consistently greater in the presence of HDL. The increment in 125I-labeled LDL binding induced by HDL was: (a) associated with a decrease in cell cholesterol content; (b) inhibited by the addition of cholesterol or cycloheximide to the incubation medium; and (c) accompanied by similar increments in 125I-labeled LDL internalization and degradation. It is concluded that HDL induces the synthesis of high affinity LDL receptors in human fibroblasts by promoting the efflux of cholesterol from the cells.  相似文献   

8.
Binding of human lipoproteins to cultured mouse Ob17 preadipose and adipose cells was studied, using labeled VLDL, LDL and apoprotein E-free HDL. In each case, saturation curves were obtained, yielding linear Scatchard plots. The Kd values were found to be respectively 6.4, 31 and 24 micrograms/ml for VLDL, LDL and apoprotein E-free HDL, whereas the maximal numbers of binding sites per cell were 4.2 X 10(4), 1.5 X 10(4) and 2.5 X 10(5). The binding of 125I-LDL was competitively inhibited by LDL greater than VLDL greater than total HDL; human LDL and mouse LDL were equipotent in competition assays. Methylated LDL and apoprotein E-free HDL were not competitors. In contrast, the binding of 125I-apoprotein E-free HDL was competitively inhibited by apoprotein E-free HDL greater than total HDL and the binding of 125I-HDL3 by mouse HDL. Thus, mouse adipose cells possess distinct apoprotein B, E and apoprotein E-free HDL binding sites which can recognize heterologous or homologous lipoproteins. The cell surface receptor of LDL in mouse preadipose cells shows similarities with that described for human fibroblasts, since: (1) the LDL binding initiated the process of internalization and degradation of the apoprotein B and apoprotein E-containing lipoproteins; (2) receptor-mediated uptake of cholesterol LDL led to a parallel but incomplete decrease in the [14C]acetate incorporation into cholesterol and in the activity of HMG-CoA reductase. Growing (undifferentiated) or growth-arrested cells (differentiated or not) showed no significant changes in the Kd values for lipoprotein binding. In contrast, the maximal number of binding sites correlated with the proliferative state of the cells and was independent of cell differentiation. The results are discussed with respect to cholesterol accumulation in adipose cells.  相似文献   

9.
1. We have compared the concentration and chemical composition of carp and human plasma lipoproteins and studied their interaction with human fibroblast LDL receptors. 2. The main lipoproteins in carp are of high density (HDL) in contrast to low density lipoproteins (LDL) in human. 3. Carp lipoproteins are devoid of apolipoprotein (apo) E, a major ligand for interaction with LDL receptors in mammals. 4. Carp very low density lipoproteins (VLDL) and LDL but not HDL nor apoA-I cross react with human LDL in their interaction with LDL receptors on human cultured fibroblasts. 5. Carp liver membranes possess high affinity receptors that are saturable and have calcium dependent ligand specificity (apoB and apoE) similar to human LDL receptor. Carp VLDL and LDL but not HDL nor its major apolipoprotein complexed to L-alpha-phosphatidylcholine dimyristoyl (apoA-I-DMPC) competed with the specific binding of human LDL to this receptor.  相似文献   

10.
The relationship between the cholesteryl ester content of normal human very low density lipoprotein (VLDL) and its ability to bind to apolipoprotein E (apoE), heparin, and the low density lipoprotein (LDL) receptor have been compared. Plasma VLDL were separated by heparin affinity chromatography into two fractions: one with apoE and one without. Both fractions had the same cholesteryl ester content relative to apolipoprotein B (apoB). LDL, on the other hand, had a greater cholesteryl ester content. VLDL were modified by lipolysis to express the ability to bind apoE (Ishikawa, Y., Fielding, C. J., and Fielding, P. E. (1988) J. Biol. Chem. 263, 2744-2749). Lipolyzed VLDL with or without apoE were compared for their ability to bind to heparin or the up-regulated fibroblast LDL receptor. Lipolyzed VLDL bound with the same affinity to the receptor whether or not the particles contained apoE. ApoB, not apoE, appears then to be the important ligand for normal VLDL. On the other hand, modified VLDL without apoE, even though binding to the LDL receptor, did not bind to heparin. These data suggest that apoE mediates heparin binding in normal VLDL, that apoB mediates receptor binding, and that the cholesteryl ester content of VLDL is not a factor in the induction of the ability to bind apoE.  相似文献   

11.
Hepatic catabolism of lipoproteins containing apolipoproteins B or E is enhanced in rats treated with pharmacologic doses of 17 alpha-ethinyl estradiol. Liver membranes prepared from these rats exhibit an increased number of receptor sites that bind 125I-labeled human low density lipoproteins (LDL) in vitro. In the present studies, this estradiol-stimulated hepatic receptor was shown to recognize the following rat lipoproteins: LDL, very low density lipoproteins obtained from liver perfusates (hepatic VLDL), and VLDL-remnants prepared by intravenous injection of hepatic VLDL into functionally eviscerated rats. The receptor also recognized synthetic lamellar complexes of lecithin and rat apoprotein E as well as canine high density lipoproteins containing apoprotein E (apo E-HDLc). It did not recognize human HDL or rat HDL deficient in apoprotein E. Much smaller amounts of this high affinity binding site were also found on liver membranes from untreated rats, the number of such sites increasing more than 10-fold after the animals were treated with estradiol. Each of the rat lipoproteins recognized by this receptor was taken up more rapidly by perfused livers from estrogen-treated rats. In addition, enrichment of hepatic VLDL with C-apoproteins lowered the ability of these lipoproteins to bind to the estradiol-stimulated receptor and diminished their rate of uptake by the perfused liver of estrogen-treated rats, just as it did in normal rats. The current data indicate that under the influence of pharmacologic doses of estradiol the liver of the rat contains increased amounts of a functional lipoprotein receptor that binds lipoproteins containing apoproteins B and E. This hepatic lipoprotein receptor appears to mediate the uptake and degradation of lipoproteins by the normal liver as well as the liver of estradiol-treated rats. The hepatic receptor bears a close functional resemblance to the LDL receptor previously characterized on extrahepatic cells.  相似文献   

12.
It has been suggested that besides the LDL-receptor, hepatocytes possess an apo E or remnant receptor. To evaluate which hepatic lipoprotein receptor is involved in VLDL remnant catabolism, we studied the binding of VLDL remnants to HepG2 cells. Native VLDL was obtained from type IIb hyperlipidemic patients and treated with bovine milk lipoprotein lipase (LPL). This LPL-treated VLDL (LPL-VLDL) was used as representative for VLDL remnants. Our results show that LPL-VLDL binds with high affinity to HepG2 cells. Competition experiments showed that the binding of 125I-labelled LPL-VLDL is inhibited to about 30% of the control value by the simultaneous addition of an excess of either unlabelled LDL or LPL-VLDL. Preincubation of HepG2 cells with LDL resulted in a reduction of the binding of LDL and LPL-VLDL to 34 and 55% of the control value, whereas preincubation of the cells with heavy HDL (density between 1.16 and 1.21 g/ml) stimulated the binding of LDL and LPL-VLDL to about 230% of the control value. Preincubation of the cells with insulin (250 nM/l) also stimulated the binding of both LDL and LPL-VLDL (175 and 143% of the control value, respectively). We conclude that LPL-VLDL binds to the LDL-receptor of HepG2 cells and that no evidence has been obtained for the presence on HepG2 cells of an additional receptor that is involved in the binding of VLDL remnants.  相似文献   

13.
The binding to HepG2 cells of very low density lipoproteins (VLDL) and their remnants (IDL) was alternatively, in the past, attributed to the low density lipoprotein receptor (LDLr) or to an apoE-specific receptor. In order to resolve this issue, we have compared the binding of those lipoproteins labelled with iodine-125 to normal and LDLr deficient HepG2 cells. Those deficient cells were obtained by a constitutive antisense strategy and their LDLr level is 14% the level of normal HepG2 cells. By saturation curve analysis, we show that VLDL and IDL bind to high and low affinity sites on cells. The low affinity binding was eliminated by conducting the assay in presence of a 200-fold excess of HDL3 respective to the concentrations of 125I-labelled VLDL and IDL. For 125I-VLDL high affinity binding to normal HepG2 cells, we found a dissociation constant (Kd) of 21.2 +/- 3.7 micrograms prot./ml (S.E., N = 5) and a maximal binding capacity (Bmax) of 0.0312 +/- 0.0063 microgram prot./mg cell prot, while we have measured a Kd of 5.3 +/- 0.8 and a Bmax of 0.0081 +/- 0.0014 with LDLr deficient cells. This indicates that LDLr is responsible for 74% of VLDL binding to HepG2 cells and that the non-LDLr high affinity receptor has a higher affinity for VLDL than LDLr. A 53% loss of 125I-IDL binding capacity was measured with LDLr deficient cells compared with normal cells (Bmax: 0.028 +/- 0.005 versus 0.059 +/- 0.006), while no significant statistical difference was found between affinities. The study shows that the LDLr is almost the only contributor in VLDL binding, while it shares IDL binding capacity with another high affinity receptor. The physiological importance of LDLr is confirmed by an almost equivalent loss of IDL and VLDL degradation in LDLr deficient cells.  相似文献   

14.
Human adipose tissue derives its cholesterol primarily from circulating lipoproteins. To study fat cell-lipoprotein interactions, low density lipoprotein (LDL) uptake and metabolism were examined using isolated human adipocytes. The 125I-labelled LDL (d = 1.025-1.045) was bound and incorporated by human fat cells in a dose-dependent manner with an apparent Km of 6.9 + 0.9 microgram LDL protein/mL and a Vmax of 15-80 microgram LDL protein/mg lipid per 2 h. In time-course studies, LDL uptake was characterized by rapid initial binding followed by a linear accumulation for at least 4 h. The 125I-labelled LDL degradation products (trichloroacetic acid soluble iodopeptides) accumulated in the incubation medium in a progressive manner with time. Azide and F- inhibited LDL internalization and degradation, suggesting that these processes are energy dependent. Binding and cellular internalization of 125I-labelled LDL lacked lipoprotein class specificity in that excess (25-fold) unlabelled very low density lipoprotein (VLDL) (d less than 1.006) and high density lipoprotein (HDL) (d = 1.075-1.21) inhibited binding and internalization of 125I-labelled LDL. On an equivalent protein basis HDL was the most potent. The 125I-labelled LDL binding to an adipocyte plasma membrane preparation was a saturable process and almost completely abolished by a three- to four-fold greater concentration of HDL. The binding, internalization, and degradation of LDL by human adipocytes resembled that reported by other mesenchymal cells and could account for a significant proportion of in vivo LDL catabolism. It is further suggested that adipose tissue is an important site of LDL and HDL interactions.  相似文献   

15.
Serum lipoproteins control cell cholesterol content by regulating its uptake, biosynthesis, and excretion. Monolayers of cultured fibroblasts were used to study interactions with human high density (HDL) and low density (LDL) lipoproteins doubly labeled with [(3)H]cholesterol and (125)I in the apoprotein moiety. In the binding assay for LDL, the absence of specific LDL receptors in type II hypercholesterolemic fibroblasts was confirmed, whereas monolayers of virus-transformed human lung fibroblasts (VA-4) exhibited LDL binding characteristics essentially the same as normal lung fibroblasts. In the studies of HDL binding, specific HDL binding sites were demonstrated in normal and virus-transformed fibroblasts. In addition, type II hypercholesterolemic cells, despite the loss of LDL receptors, retained normal HDL binding sites. No significant competition was displayed between the two lipoprotein classes for their respective binding sites over a 5-fold concentration range. In VA-4 cells, the amount of lipoprotein required to saturate half the receptor sites was 3.5 micro g/ml (9 x 10(-9) M) for LDL and 9.1 micro g/ml (9 x 10(-8) M) for HDL. Pronase treatment reduced LDL binding by more than half but had no effect on HDL binding. Chloroquine, a lysomal enzyme inhibitor, stimulated net LDL uptake 3.5-fold by increasing internalized LDL but had essentially no effect on HDL uptake. Further experiments were conducted using doubly labeled lipoproteins to characterize the interaction of LDL and HDL with cells. While the cholesterol and protein moieties of LDL were incorporated into cells at similar rates, the uptake of the cholesterol moiety of HDL was 5 to 10 times more rapid than that of the protein component. Furthermore, the apoprotein component of LDL is extensively degraded following exposure, whereas the apoprotein moiety of HDL retains its macromolecular chromatographic characteristics. These results indicate that HDL and LDL bind to cultured cells at separate sites and that further processing of the two lipoprotein classes appears to take place by fundamentally different mechanisms.-Wu, J-D., J. Butler, and J. M. Bailey. Lipid metabolism in cultured cells XVIII. Comparative uptake of low density and high density lipoproteins by normal, hypercholesterolemic, and tumor virus-transformed human fibroblasts.  相似文献   

16.
From the severe neurological syndromes resulting from vitamin E deficiency, it is evident that an adequate supply of the brain with alpha-tocopherol (alphaTocH), the biologically most active member of the vitamin E family, is of utmost importance. However, uptake mechanisms of alphaTocH in cells constituting the blood-brain barrier are obscure. Therefore, we studied the interaction of low (LDL) and high (HDL) density lipoproteins (the major carriers of alphaTocH in the circulation) with monolayers of primary porcine brain capillary endothelial cells (pBCECs) and compared the ability of these two lipoprotein classes to transfer lipoprotein-associated alphaTocH to pBCECs. With regard to potential binding proteins, we could identify the presence of the LDL receptor and a putative HDL3 binding protein with an apparent molecular mass of 100 kDa. At 4 degrees C, pBCECs bound LDL with high affinity (K(D) = 6 nM) and apolipoprotein E-free HDL3 with low affinity (98 nM). The binding capacity was 20,000 (LDL) and 200,000 (HDL3) lipoprotein particles per cell. alphaTocH uptake was approximately threefold higher from HDL3 than from LDL when [14C]alphaTocH-labeled lipoprotein preparations were used. The majority of HDL3-associated alphaTocH was taken up in a lipoprotein particle-independent manner, exceeding HDL3 holoparticle uptake 8- to 20-fold. This uptake route is less important for LDL-associated alphaTocH (alphaTocH uptake approximately 1.5-fold higher than holoparticle uptake). In line with tracer experiments, mass transfer studies with unlabeled lipoproteins revealed that alphaTocH uptake from HDL3 was almost fivefold more efficient than from LDL. Biodiscrimination studies indicated that uptake efficacy for the eight different stereoisomers of synthetic alphaTocH is nearly identical. Our findings indicate that HDL could play a major role in supplying the central nervous system with alphaTocH in vivo.  相似文献   

17.
Like all other peripheral cells types thus far studied in culture, endothelial cells derived from the rabbit aorta bind, internalize and degrade low density lipoprotein (LDL) at a significant rate. At any given LDL concentration, the metabolism by rabbit endothelial cells was slower than that by fibroblasts or smooth muscle cells. Thus, longer incubations were required to achieve a net increment in cell cholesterol content or to suppress endogenous sterol synthesis; after 18-24 h incubation in the presence of LDL at 100 microgram LDL protein/ml inhibition was greater than 80% relative to the rate in cells incubated in the absence of lipoproteins. High density lipoproteins (HDL) were also taken up and degraded but did not inhibit sterol synthesis. Studies of LDL binding to the cell surface suggested the presence of at least two classes of binding sites; the high-affinity binding sites were fully saturated at very low LDL concentrations (about 5 microgram LDL protein/ml). However, the degree of inhibition of endogenous sterol synthesis increased progressively with increasing LDL concentrations from 5 to 100 microgram LDL/ml, suggesting that uptake from the low affinity sites in this cell line contributes to the suppression of endogenous sterol synthesis. The internalization and degradation of LDL also increased with concentrations as high as 700 microgram/ml. Thus, in vivo, where the cells are exposed to LDL concentrations far above that needed to saturate the high affinity sites, most of the LDL degradation would be attributable to LDL taken up from low affinity sites. As noted previously in swine arterial smooth muscle cells and in human skin fibroblasts, unlabeled HDL reduced the binding, internalization and degradation of labeled LDL. Cells incubated for 24 h in the presence of high concentrations of LDL alone showed a net increment in cell cholesterol content; the simultaneous presence of HDL in the medium significantly reduced this LDL-induced increment in cell cholesterol content. The possible relationship between LDL uptake and degradation by these cells in vitro is discussed in relationship to their transport function in vivo.  相似文献   

18.
Apolipoprotein A-I regulates lipid hydrolysis by hepatic lipase   总被引:2,自引:0,他引:2  
Association of hepatic lipase (HL) with pure heparan sulfate proteoglycans (HSPG) has little effect on hydrolysis of high density lipoprotein (HDL) particles, but significantly inhibits (>80%) the hydrolysis of low (LDL) and very low density lipoproteins (VLDL). Lipolytic inhibition is associated with a differential ability of the lipoproteins to remove HL from the HSPG. LDL and VLDL are unable to displace HL, whereas HDL readily displaces HL from the HSPG. These data show that HSPG-bound HL is inactive. Purified apolipoprotein (apo) A-I is more efficient than HDL at liberating HL from HSPG, and HL displacement is associated with the direct binding of apoA-I to HSPG. However, displacement of HL by apoA-I does not enhance hydrolysis of VLDL particles. This appears due to the direct inhibition of HL by apoA-I. Both apoA-I and HDL are able to inhibit VLDL lipid hydrolysis by up to 60%. Inhibition of VLDL hydrolysis is associated with the binding of apoA-I to the surface of the VLDL particle and a concomitant decreased affinity for HL. These data show that apoA-I can regulate lipid hydrolysis by HL by liberating/activating the enzyme from cell surface proteoglycans and by directly modulating lipoprotein binding and hydrolysis.  相似文献   

19.
The catabolism of human HDL was studied in human hepatoma cell line HepG2. The binding of 125I-labeled HDL at 4 degrees C was time-dependent and reached completion within 2 h. The observed rates of binding of 125I-labeled HDL at 4 degrees C and uptake and degradation at 37 degrees C indicated the presence of both high-affinity and low-affinity binding sites for this lipoprotein density class. The specific binding of 125I-labeled HDL accounted for 55% of the total binding capacity. The lysosomal degradation of 125I-labeled HDL was inhibited 25 and 60% by chloroquine at 50 and 100 microM, respectively. Depolymerization of microtubules by colchicine (1 microM) inhibited the degradation of 125I-labeled HDL by 36%. Incubation of cells with HDL caused no significant change in the cellular cholesterol content or in the de novo sterol synthesis and cholesterol esterification. Binding and degradation of 125I-labeled HDL was not affected by prior incubation of cells with HDL. When added at the same protein concentration, unlabeled VLDL, LDL and HDL had similar inhibitory effects on the degradation of 125I-labeled HDL, irrespective of a short or prolonged incubation time. Reductive methylation of unlabeled HDL had no significant effect on its capacity to inhibit the 125I-labeled HDL degradation. The competition study indicated no correlation between the concentrations of apolipoproteins A-I, A-II, B, C-II, C-III, E and F in VLDL, LDL and HDL and the inhibitory effect of these lipoprotein density classes on the degradation of 125I-labeled HDL. There was, however, some association between the inhibitory effect and the levels of apolipoprotein D and C-I.  相似文献   

20.
A variety of tumor cells have been shown to express lipoprotein receptors. Recent data suggest that lipoprotein receptors may play a regulatory role in the growth of certain tumor cells. We investigated the effects of vasoactive intestinal peptide (VIP) and somatostatin-14 (SST-14) on the binding of 111Indium-labeled lipoproteins [(111)In-low density lipoprotein ((111)In-LDL), (111)In-high density lipoprotein ((111)In-HDL) and (111)In-very low density lipoprotein ((111)In-VLDL)] onto the epidermoid mammary carcinoma cell line A431. Scatchard analyses of the binding data indicated one class of specific high affinity binding sites for LDL, HDL and VLDL expressed by A431 cells, respectively. VIP increased significantly the binding capacity for (111)In-LDL on A431 cells. The VIP-induced increase of (111)In-LDL binding sites was inhibited by SST-14. Furthermore, SST-14 inhibited VIP-induced 3H-thymidine incorporation and adenosine 3'-5' cyclic monophosphate (cAMP) formation in A431 cells with IC50 values in the range of 5-7 nM. However, SST-14 showed no effect on dibutyryl-cAMP-induced increase of (111)In-LDL binding sites expressed on A431 cells. In contrast to (111)In-LDL binding, no effects of VIP or SST-14 on HDL or VLDL binding to A431 tumor cells were found. Our results suggest a direct effect of VIP and SST-14 on LDL-binding onto tumor cells. The complex interactions between VIP and SST-14 on LDL receptor expression of tumor cells may play a role in tumor cell lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号