首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We have isolated a nonhistone chromosomal protein fraction from chicken liver chromatin which possesses high affinity and preferential sequence DNA binding. Residually DNA-bound nonhistone chromosomal proteins after 2.0 M NaCl extraction of bulk chromatin are isolated. Bound proteins are released by dissociation of the complexes in 5.0 M urea/3.0 M NaCl. We have investigated the in vitro DNA-binding properties of this class. In contrast to other DNA-binding NHCP whose activities have been studied, direct DNA-binding activity is observed which is not abolished under conditions of high ionic strength (to 3.0 M NaCl). Strong preference in binding fractionated homologous DNA is observed, while binding of heterologous (E. Coli) DNA is negligible. The fractionation of homologous DNA permits the isolation of DNA for which this protein class displays strong binding preference, presumably through a concentration of binding sites. The composite data suggest sequence-specific interaction between this protein class and DNA, which is not abolished by high ionic strength.  相似文献   

2.
The retinoblastoma (RB) gene encodes a nuclear phosphoprotein with a molecular weight of 110,000 (pp110RB) associated with DNA-binding activity. This sequence-nonspecific DNA binding activity was further studied by Southwestern and DNA-cellulose chromatography using purified fusion proteins expressed in Escherichia coli. Three fusion proteins, containing amino acids 612-775, 776-928, and 612-928 of pp110RB, bound to DNA; the binding affinity of the latter was approximately 20-fold higher than those of either smaller region. Other regions of pp110RB had no detectable binding activity, indicating that the carboxyl-terminal region of the RB protein is the major domain responsible for interacting with DNA. Since several potential phosphorylation sites reside within this region, isoforms of RB protein from cellular lysates with various degrees of phosphorylation were compared with respect to their DNA-binding affinity. The hyperphosphorylated form was eluted from DNA-cellulose columns at 0.1-0.3 M NaCl, whereas the hypophosphorylated form appeared in the eluates only at salt concentrations of 0.4-0.7 M, implying that phosphorylation of RB protein may affect its DNA-binding activity. That pp110RB can bind DNA intrinsically, and that this activity can be modulated by phosphorylation, is consistent with the proposed regulatory role of the RB protein in cell growth and differentiation.  相似文献   

3.
Single-stranded DNA-binding proteins (SSB-proteins) isolated from Ehrlich ascites tumour (EAT) cells were incubated for 30 min at 5 mM NaCl with salmon sperm DNA or [3H]DNA from EAT at the SSB-protein/DNA ratio (w/w) of 0 to 4.5. After addition of sodium dodecyl sulfate up to a 0.05% concentration, the proteins were applied to columns with benzoylated naphthoylated DEAE-cellulose. Double-stranded DNA was eluted by 1 M NaCl; the DNA containing single-stranded regions was eluted by 50% dimethylformamide. There was a progressive lowering of the DNA content in the first eluate and a rise in the second eluate, as could be evidenced from the increase in the SSB-protein/DNA w/w ratio. This effect was more pronounced in the case of homologous DNA and was not coupled with the nuclease activity of SSB proteins. It was concluded that EAT SSB-proteins are "DNA-unwinding" proteins.  相似文献   

4.
The dependence of cell proliferation on nuclear protein phosphorylation was studied with exponential-phase and stationary-phase cultures of Chinese-hamster ovary cells. Nuclear proteins were fractionated, according to their DNA-binding affinities, by using sequential extractions of isolated nuclei with increasing concentrations of NaCl. When viable whole cells were labelled with H332PO4, phosphorylation of nuclear proteins was found to be lower in quiescent cells than in proliferating cells. Phosphorylation of nuclear proteins soluble in 0.30M-NaCl (less than 50% of these proteins bind to DNA) was greater than for those proteins soluble in higher salt concentrations (80-100% of these proteins bind to DNA). Cyclic AMP enhanced the phosphorylation of nuclear proteins soluble in 0.3 m-NaCl by 40-50%, and this stimulation was independent of cell growth. Cyclic AMP also increased the phosphorylation of nuclear proteins soluble in 0.6M-NaCl and 2.0M-NaCl by 40-50% in exponential-phase cultures, but not in stationary-phase cultures. Several examples of specific phosphorylation in response to cyclic AMP were observed, including a 35000-mol.wt. protein in the 0.30 M-NaCl-soluble fraction and several proteins larger than 100000 molecular weight within this fraction. A major peptide of molecular weight approx. 31000 extracted with 0.6M-NaCl was also phosphorylated. Its phosphorylation was independent of cyclic AMP in exponential-phase cultures, and it was not phosphorylated in plateau-phase cells. These changes in cell-growth-dependent phosphorylation occurred in the absence of any apparent qualitative changes in the nuclear protein molecular-weight distributions. These data demonstrate that (1) phosphorylation of nuclear proteins is dependent on the culture's proliferative status, (2) both cyclic AMP-dependent and cyclic AMP-independent specific phosphorylation occurs, and (3) the cyclic AMP-dependent growth-independent phosphorylation that occurs does not appear to be a modification of DNA-binding proteins, whereas the cyclic AMP-dependent growth-dependent phosphorylation does involve modification of DNA binding proteins.  相似文献   

5.
Cyclic adenosine 3',5'-monophosphate (cAMP) dependent protein kinase and proteins specifically binding cAMP have been extracted from calf thymus nuclei and analyzed for their abilities to bind to DNA. Approximately 70% of the cAMP-binding activity in the nucleus can be ascribed to a nuclear acidic protein with physical and biochemical characteristics of the regulatory (R) subunit of cAMP-dependent protein kinase. Several peaks of protein kinase activity and of cAMP-binding activity are resolved by affinity chromatography of nuclear acidic proteins on calf thymus DNA covalently linked to aminoethyl Sephrarose 4B. When an extensively purified protein kinase is subjected to chromatography on the DNA column in the presence of 10(-7) M cAMP, the R subunit of the kinase is eluted from the column at 0.05 M NaCl while the catalytic (C) subunit of the enzyme is eluted at 0.1-0.2 M NaCl. When chromatographed in the presence of histones, the R subunit is retained on the column and is eluted at 0.6-0.9 M NaCl. In the presence of cAMP, association of the C subunit with DNA is enhanced, as determined by sucrose density gradient centrifugation of DNA-protein kinase complexes. cAMP increases the capacity of the calf thymus cAMP-dependent protein kinase preparation to bind labeled calf thymus DNA, as determined by a technique employing filter retention of DNA-protein complexes. This protein kinase preparation binds calf thymus DNA in preference to salmon DNA, Escherichia coli DNA, or yeast RNA. Binding of protein kinases to DNA may be part of a mechanism for localizing cyclic nucleotide stimulated protein phosphorylation at specific sites in the chromatin.  相似文献   

6.
Two types of soluble cAMP-dependent protein kinase (I and II) were isolated from rabbit myometrium cytosol at functional rest and characterized. In pregnancy, protein kinase is represented by type II alone. Upon delivery, one isoform of the enzyme was detected, which was eluted from a DEAE-cellulose column with 0.15-0.22 M. NaCl. During the postnatal period, the elution profile of the enzyme is made up of two protein bands, one fraction being eluted with 0.15-0.22 M NaCl (93% of total enzyme content), and the other one being represented by a minor component eluted with 0.07-0.09 M. NaCl (7%). In terms off isoenzyme activity, main kinetic properties, ability to autophosphorylate and Kass for cAMP, the protein kinase isolated during delivery and the major protein kinase fraction obtained in the postnatal period can be related to protein kinases type II. Quantitative and qualitative expression of two types of soluble cAMP-dependent protein kinase from rabbit myometrium isolated at different functional states may be due to differences in their biological activity.  相似文献   

7.
Cytoplasmic DNA-binding proteins   总被引:1,自引:0,他引:1  
Cytoplasmic DNA-binding proteins were isolated from Chinese hamster liver, kidney and tissue culture cells by DNA-polyacrylamide chromatography. With homologous Chinese hamster DNA, and with calf thymus DNA, 1.4% of the proteins were bound to the column. With single-stranded DNA and with heterologous Micrococcus lysodeikticus DNA there was only 0.3% binding, suggesting the proteins preferentially bind to double-stranded DNA and show some sequence specificity. By a nitrocellulose filter assay the bound proteins had at least a 4- to 7-fold greater affinity for DNA than bulk cytoplasmic protein. SDS gel electrophoresis showed that specific proteins were being markedly concentrated by the column and it was primarily the high molecular weight proteins of 65 000 D and over which showed sequence specificity. Some proteins appeared in common with different organs, others were unique. These studies thus define a group of high molecular weight, cytoplasmic proteins which bind to native DNA with a degree of sequence specificity. Their possible relationship to gene regulation is discussed.  相似文献   

8.
D Cockayne  K R Cutroneo 《Biochemistry》1988,27(8):2736-2745
Nuclei were isolated from control and dexamethasone-treated (2 h) embryonic chick skin fibroblasts and transcribed in vitro. Nuclei isolated from dexamethasone-treated fibroblasts transcribed less pro alpha 1(I) and pro alpha 2(I) mRNAs but not beta-actin mRNA. Fibroblasts receiving dexamethasone and [5,6-3H]uridine also demonstrated decreased synthesis of nuclear type I procollagen mRNAs but not beta-actin mRNA. In fibroblasts treated with cycloheximide the newly synthesized nuclear type I procollagen mRNA species were markedly decreased. An enhanced inhibitory effect was observed when fibroblasts were treated with cycloheximide plus dexamethasone. Since the studies above demonstrate that active protein synthesis is required to maintain the constitutive expression of the type I procollagen genes, we determined if glucocorticoids regulate DNA-binding proteins with sequence specificity for the alpha 2(I) procollagen gene. Nuclear protein blots were probed with the 32P-end-labeled pBR322 vector DNA and 32P-end-labeled alpha 2(I) procollagen promoter containing DNA. Nonhistone proteins remained bound to labeled DNA at stringency washes of 0.05 and 0.1 M NaCl. As the ionic strength was increased to 0.2 and 0.3 M NaCl, the nonhistone-protein DNA binding was preferentially lost. Only the low molecular weight proteins remained bound to labeled DNA at the highest ionic strength, indicating nonspecific binding of these nuclear proteins. Dexamethasone treatment resulted in an increase of binding of nonhistone proteins to vector- and promoter-labeled DNAs over that observed in control fibroblasts at stringency washes of 0.05 and 0.1 M NaCl and to a lesser extent at 0.2 M NaCl. The binding specificities of nonhistone proteins for the alpha 2(I) procollagen promoter containing DNA were calculated. Three nonhistone DNA-binding proteins of Mr 90,000, 50,000, and 30,000 had altered specificities following dexamethasone treatment.  相似文献   

9.
The cytoplasmic DNA-binding proteins of Physarum polycephalum were recovered by chromatography of cytosol extracts on sequential columns of native and denatured calf thymus DNA-cellulose. 5.4% of the total cytosol protein was bound to native DNA-cellulose, while 4.4% was bound to denatured DNA-cellulose. Stepwise salt gradient elution of the columns separated the DNA-binding proteins into 9 fractions which were analysed by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Several hundred discrete polypeptide bands were identified, with many more high molecular weight polypeptides (greater than 100 000 D) binding to native than to denatured DNA. Continuous in vivo labelling of microplasmodia in KH2[32P]O4 and [3H]leucine was used to determine which of the DNA-binding proteins were phosphorylated, and to approximate their phosphorus content. About 30–40 phosphoproteins were resolved among the DNA-binding proteins. Most phosphoproteins contained less than 3 phosphates per polypeptide, but a small number of low molecular weight phosphoproteins (less than 50 000 D) contained from 5 to 10 phosphates per polypeptide. The majority of high molecular weight DNA-binding phosphoproteins bound to native DNA and were eluted with 0.25 M NaCl. As a group, the DNA-binding proteins were enriched in protein-bound phosphorus when compared with the cytosol proteins which did not bind to DNA. The phosphorus content of the cytoplasmic DNA-binding proteins was similar to that of the acidic nuclear proteins.  相似文献   

10.
We characterized a DNA-binding protein with an approximate molecular weight of 129,000 (DB129) which is present in the nuclei of cytomegalovirus- (strain Colburn) infected cells, but not in virus particles. Results of two types of experiments demonstrated that DB129 is a member of the early class of herpesviral proteins. First, time course pulse-labeling experiments showed that its synthesis begins after that of the immediate-early protein IE94, but prior to the appearance of late viral proteins, and was reduced at late times. Second, in the presence of inhibitors of viral DNA replication, DB129 continued to be made and accumulated to elevated levels. A second set of experiments showed that DB129 bound to single-stranded DNA in vitro and was eluted by a NaCl gradient in two peaks, one at about 0.2 M and the second at about 0.6 M. A similar pattern of release was observed when infected-cell nuclei were serially extracted with increasing NaCl concentrations. In addition, treatment of nuclei with DNase I selectively released DB129, along with a small but significant fraction of another DNA-binding protein, DB51. These results suggest that DB129 is associated with DNA in vivo and that it interacts directly with single-stranded DNA. It was also shown that cells infected with human cytomegalovirus (strain Towne) contain a slightly larger counterpart to DB129, which was designated DB140. Similarities between these proteins and the major DNA-binding protein of herpes simplex virus are discussed.  相似文献   

11.
In vitro beryllium (Be) binding to rat liver nuclei has been reassessed (KAss = 2.0 X 10(6) M: n = 17 nmol Be/mg protein). Be also binds to rat liver nucleoli (KAss approx. 4 X 10(6) M: n = 10 nmol Be/mg protein). Examination of rat liver chromatin fractionated on a hydroxyapatite column shows that Be does not bind to histone or to the non-histone protein eluted by 0.05 M sodium phosphate. Be is strongly bound to the non-histone proteins eluted by 0.2 M sodium phosphate (KAss = 1.1 X 10(6) M: n = 55 nmol Be/mg protein) and also to the same extent to the fraction containing DNA which is subsequently eluted from the column. Evidence is provided that the latter binding is not due to DNA. The fractions containing the Be-binding proteins also contain the proteins which are phosphorylated to the greater extent.  相似文献   

12.
13.
14.
The major DNA-binding protein encoded by several temperature-sensitive mutants of herpes simplex virus type 1 was thermolabile for binding to intracellular viral DNA. The ability of DNase I to release this protein from isolated nuclei was used as a measure of the amount of protein bound to viral DNA. This assay was based upon our previous observation that the fraction of herpesviral DNA-binding protein which can be eluted from nuclei with DNase I represents proteins associated with progeny viral DNA (D. M. Knipe and A. E. Spang, J. Virol. 43:314-324, 1982). In this study, we found that several temperature-sensitive mutants encoded proteins which rapidly chased from a DNase I-sensitive to a DNase I-resistant nuclear form upon shift to the nonpermissive temperature. We interpret this change in DNase I sensitivity to represent the denaturation of the DNA-binding site at the nonpermissive temperature and the association with the nuclear framework via a second site on the protein. The DNA-binding activity measured by the DNase I sensitivity assay represents an important function of the protein in viral replication because three of five mutants tested were thermolabile for this activity. A fourth mutant encoded a protein which did not associate with the nucleus at the nonpermissive temperature and therefore would not be available for DNA binding in the nucleus. We also present supportive evidence for the binding of the wild-type protein to intracellular viral DNA by showing that a monoclonal antibody coprecipitated virus-specific DNA sequences with the major DNA-binding protein.  相似文献   

15.
16.
Centromere function on minichromosomes isolated from budding yeast.   总被引:7,自引:1,他引:6       下载免费PDF全文
Centromeres are a complex of centromere DNA (CEN DNA) and specific factors that help mediate microtubule-dependent movement of chromosomes during mitosis. Minichromosomes can be isolated from budding yeast in a way that their centromeres retain the ability to bind microtubules in vitro. Here, we use the binding of these minichromosomes to microtubules to gain insight into the properties of centromeres assembled in vivo. Our results suggest that neither chromosomal DNA topology nor proximity of telomeres influence the cell's ability to assemble centromeres with microtubule-binding activity. The microtubule-binding activity of the minichromosome's centromere is stable in the presence of competitor CEN DNA, suggesting that the complex between the minichromosome CEN DNA and proteins directly bound to it is very stable. The efficiency of centromere binding to microtubules is dependent upon the concentration of microtubule polymer and is inhibited by ATP. These properties are similar to those exhibited by mechanochemical motors. The binding of minichromosomes to microtubules can be inactivated by the presence of 0.2 M NaCl and then reactivated by restoring NaCl to 0.1 M. In 0.2 M NaCl, some centromere factor(s) bind to microtubules, whereas other(s) apparently remain bound to the minichromosome's CEN DNA. Therefore, the yeast centromere appears to consist of two domains: the first consists of a stable core containing CEN DNA and CEN DNA-binding proteins; the second contains a microtubule-binding component(s). The molecular functions of this second domain are discussed.  相似文献   

17.
Extraction of chicken reticulocyte chromatin with 2.0 M NaCl removed 96% of chromosomal protein and yields two DNA components after dialysis and high-speed centrifugation. The bulk of chromosomal DNA (ca. 99%) is rendered free of protein, and is thus soluble in 10 mM Tris-HCl, pH 8.0. The other component (ca. 1%) displays a high protein/DNA ratio, and is insoluble in 10mM Tris-HCl, pH 8.0. These DNAs can be separated on the basis of their solubilities. Analysis of the reassociation kinetics with total chicken DNA of these DNAs reveals marked differences. Whereas total DNA and the soluble component (DNA-S) have rapidly reassociating components, the insoluble component (DNA-P) is devoid of these components, and is therefore composed completely of unique sequence DNA. Cot 1/2 values indicate that DNA-S is substantially depleted of some DNA-P sequences. We conclude that this segregation, as determined by tightly-bound nonhistone chromosomal proteins, selects a subset of total genomic DNA sequences, and suggests sequence-specific interaction between the tightly-bound nonhistones and DNA.  相似文献   

18.
Analysis of the protein synthesized by Escherichia coli minicells containing R factors demonstrated a variety of low- and high-molecular-weight polypeptides in sodium dodecyl sulfate (SDS)-polyacrylamide gels. Only half of this protein was released into a soluble fraction on lysis of these minicells. The other half remained associated with the minicell envelope. The efficiency of precursor incorporation into protein and the kinds of proteins synthesized changed with the age of the minicells at the time of harvest. About 1 to 2% of the soluble R factor-coded protein bound to calf thymus, E. coli, or R factor DNA-cellulose. Although most of these proteins were excluded from Sephadex G-100 columns, they migrated chiefly as low-molecular-weight-polypeptides (13,000 to 15,000) in SDS-polyacrylamide gels. Additional DNA-binding proteins that appeared to be higher-molecular-weight peptides were noted in extracts from younger minicells. At least one protein, identified as an SDS band, appeared to bind selectively to R factor DNA-cellulose. Minicells with R factors also contained DNA-binding proteins of cell origin, including the core RNA polymerase. No such binding proteins were found in R(-) minicells. These studies suggest that: (i) R factors code for proteins that may be involved in their own DNA metabolism; (ii) R factor DNA-binding proteins may be associated with larger host cell DNA-binding proteins or subunits of larger R factor proteins; and (iii) the age of the minicell influences the extent of protein synthesis and the kinds of proteins synthesized by R factors in minicells.  相似文献   

19.
Proteins were extracted from isolated rat liver nuclei with 0.15 M NaCl and 0.35 M NaCl at pH 8.0. The number of phosphoproteins in these extracts was determined by labeling with 32P and autoradiography after two-dimensional gel electrophoresis. Two proteins, B22p and B24p, contained small amounts of 32P and sedimented with the 30S nuclear informofer particle. With the exception of two phosphoproteins, CB and CN', all of the phosphoproteins found in the 0.35 M NaCl extract. Approximately 20% of the 0.15 M NaCl soluble proteins bound to rat liver DNA in 0.05 M KCl-0.05 M Tris-HCl (pH 8). Of these proteins, 1-2% bound to DNA in 0.15 M KCl and were eluted with 2 M KCl. This DNA bound fraction which contained both phosphorylated and nonphosphorylated proteins was similar in both the 0.15 and 0.35 M NaCl extracts. However, two major proteins (C13 and C14) and three minor proteins (C15, C25, Cg') were present only in the 0.15 M NaCl extract. The results of the present study show that there are marked similarities in the two-dimensional gel electrophoretic, phosphorylation, and DNA binding properties of rat liver nuclear proteins soluble in either 0.15 or 0.35 M NaCl.  相似文献   

20.
Rat lymph chylomicrons were separated into two fractions using heparin-Sepharose chromatography: a major fraction which elutes from the column with the void volume at 0.05 M NaCl, and a smaller fraction which binds to the column at 0.05 M NaCl and elutes at 0.3 M NaCl. These two fractions differ in mean particle size, and lipid and protein compositions. Both fractions share apolipoproteins B, A-IV, E, A-I, and C, but the fraction which binds to heparin-Sepharose contains two additional proteins: protein I (Mr = 6.0 X 10(4)), and protein II (Mr = 8.0 X 10(4)). Both proteins are also present in the lipoprotein-free fraction of rat serum. Proteins I and II bind to heparin-Sepharose, and are highly amphiphilic: they bind with high affinity to phospholipid surfaces and form stable monolayers at the air-water interface. The molecular weight, amino acid composition, heparin binding, and amphiphilicity of protein I resemble that of beta 2-glycoprotein I; in addition, protein I from rat lymph chylomicrons cross-reacts with rabbit antiserum to human beta 2-glycoprotein I, suggesting that these two proteins are homologous. Protein II appears to be a previously undescribed protein. The possible functions of these two proteins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号