首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Measurement of exchange rates between water and NH protons by magnetization transfer methods is often complicated by artifacts, such as intramolecular NOEs, and/or TOCSY transfer from C protons coincident with the water frequency, or exchange-relayed NOEs from fast exchanging hydroxyl or amine protons. By applying the Phase-Modulated CLEAN chemical EXchange (CLEANEX-PM) spin-locking sequence, 135°(x) 120°(-x) 110°(x) 110°(-x) 120°(x) 135°(-x) during the mixing period, these artifacts can be eliminated, revealing an unambiguous water-NH exchange spectrum. In this paper, the CLEANEX-PM mixing scheme is combined with Fast-HSQC (FHSQC) detection and used to obtain accurate chemical exchange rates from the initial slope analysis for a sample of 15N labeled staphylococcal nuclease. The results are compared to rates obtained using Water EXchange filter (WEX) II-FHSQC, and spin-echo-filtered WEX II-FHSQC measurements, and clearly identify the spurious NOE contributions in the exchange system.  相似文献   

2.
Summary A rapid and sensitive 2D approach is presented for measuring amide proton exchange rates and the NOE interaction between amide protons and water. The approach is applicable to uniformly 13C/15N-enriched proteins and can measure magnetization exchange rates in the 0.02 to >20s–1 range. The experiments rely on selective excitation of the water resonance, coupled with purging of underlying H resonances, followed by NOESY-or ROESY-type transfer to amide protons, which are dispersed by the amide 15N frequencies in an HSQC-type experiment. Two separate but interleaved experiments, with and without selective inversion of the H2O resonance, yield quantitative results. The method is demonstrated for a sample of the calcium-binding protein calcineurin B. Results indicate rapid amide exchange for the five calcineurin B residues that are analogous to the five rapidly exchanging residues in the central helix of the homologous protein calmodulin.  相似文献   

3.
Summary Conformational rate processes in aqueous solutions of uniformly 15N-labeled pancreatic trypsin inhibitor (BPTI) at 36°C were investigated by measuring the rotating frame relaxation times of the backbone 15N spins as a function of the spin-lock power. Two different intramolecular exchange processes were identified. A first local rate process involved the residues Cys38 and Arg39, had a correlation time of about 1.3 ms, and was related to isomerization of the chirality of the disulfide bond Cys14-Cys38. A second, faster motional mode was superimposed on the disulfide bond isomerization and was tentatively attributed to local segmental motions in the polypeptide sequence-Cys14-Ala15-Lys16-. The correlation time for the overall rotational tumbling of the protein was found to be 2 ns, using the assumption that relaxation is dominated by dipolar coupling and chemical shift anistropy modulated by isotropic molecular reorientation.Abbreviations BPTI basic pancreatic trypsin inhibitor - 2D two-dimensional - COSY 2D correlation spectroscopy - TOCSY 2D total correlation spectroscopy - RF radio frequency - CW continuous wave - TPPI time-proportional phase incrementation - CSA chemical shift anisotropy - T1 longitudinal relaxation time - T2 transverse relaxation time - T1 relaxation time in the rotating frame , correlation time for overall rotational reorientation of the protein - ex s , ex f , correlation times for two conformational exchange processes (slow and fast).  相似文献   

4.
NMR spin relaxation in the rotating frame (R) is a unique method for atomic-resolution characterization of conformational (chemical) exchange processes occurring on the microsecond time scale. Here, we use amide 1H off-resonance R relaxation experiments to determine exchange parameters for processes that are significantly faster than those that can be probed using 15N or 13C relaxation. The new pulse sequence is validated using the E140Q mutant of the C-terminal domain of calmodulin, which exhibits significant conformational exchange contributions to the transverse relaxation rates. The 1H off-resonance R data sample the entire relaxation dispersion profiles for the large majority of residues in this protein, which exchanges between conformations with a time constant of approximately 20 μs. This is in contrast to the case for 15N, where additional laboratory-frame relaxation data are required to determine the exchange parameters reliably. Experiments were performed on uniformly 15N-enriched samples that were either highly enriched in 2H or fully protonated. In the latter case, dipolar cross-relaxation with aliphatic protons were effectively decoupled to first order using a selective inversion pulse. Deuterated and protonated samples gave the same results, within experimental errors. The use of deuterated samples increases the sensitivity towards exchange contributions to the 1H transverse relaxation rates, since dipolar relaxation is greatly reduced. The exchange correlation times determined from the present 1H off-resonance R experiments are in excellent agreement with those determined previously using a combination of 15N laboratory-frame and off-resonance R relaxation data, with average values of and 21 ± 3 μs, respectively.  相似文献   

5.
Summary Leaves of two field growing co-occuring perennial shrubs (drought-deciduous Diplacus aurantiacus and the evergreen Heteromeles arbutifolia) from the Californian chaparral were exposed to small doses of SO2. During this exposure the leaf environment was manipulated to determine how the presence of SO2 alters the response of gas exchange to other environmental stresses. The data show that no direct changes in stomatal conductance (g) or net assimilation rate (A) could be attributed to short-term (7 h) SO2 (4.2 mol m-3, 0.1 l l-1) exposure. D. aurantiacus leaves possessed features which demonstrate that they were sensitive to changes in environment e.g. light flux and atmospheric relative humidity. The interspecific differences in stomatal sensitivity to water vapour were extremely important, as relative humidity is a major factor influencing carbon fixation and the rate of pollutant absorption. Conditions of high relative humidity and high xylem water potentials are suggested to pre-dispose leaves of D. aurantiacus to greater pollutant doses than the more stomatally-conservative evergreen, H. arbutifolia. In the presence of SO2 there was some indication of increased g for both D. aurantiacus and H. arbutifolia as W became smaller. This SO2-effect was only obvious as increasing atmospheric humidity induced further stomatal opening. The important consequences of an SO2 enhanced g, were a reduction in WUE, which may cause earlier leaf abscission and a concomitant decline in productivity.Abbreviations A net photosynthesis - A max maximum rate light saturated photosynthesis - E transpiration; g stomatal conductance to water vapour - QY apparent incident quantum yield - W water vapour mole fraction difference between the leaf and the air - SO2 Sulphur dioxide - WUE water use efficiency (mol CO2 fixed per mol H2O-1 transpired)  相似文献   

6.
Summary 2D 1H NMR spectroscopy of two -helical peptides which differ in their amphipathicity has been used to investigate the relationships between amide-proton chemical shifts, amide-proton exchange rates, temperature, and trifluoroethanol (TFE) concentration. In 50% TFE, in which the peptides are maximally helical, the amide-proton chemical shift and temperature coefficient patterns are very similar to each other in each peptide. Temperature coefficients from –10 to –6 ppb/K, usually indicative of the lack of intramolecular hydrogen bonds, were observed even for hydrophobic amino acids in the center of the -helices. However, slow hydrogen isotope exchange for residues from 4 to 16 in both 18-mer helices indicates intact intramolecular hydrogen bonds over most of the length of these peptides. Based on these anomalous observations, we suggest that the pattern of amide-proton shifts in -helices in H2O/TFE solvents is dominated by bifurcated intermolecular hydrogen-bond formation between the backbone carbonyl groups and TFE. The amide-proton chemical shift changes with increasing temperature may be interpreted by a disruption of intermolecular hydrogen bonds between carbonyl groups and the TFE in TFE/water rather than by the length of intramolecular hydrogen bonds in -helices. Supplementary Material is available upon request, comprising seven pages with listings of experimental details and the NMR shift data for the two peptides.  相似文献   

7.

Background

Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy is a powerful and non-invasive tool for the analysis of molecular structures, conformations, and dynamics. However, the inhomogeneity of magnetic fields experienced by samples will destroy spectral information and hinder spectral analysis. In this study, a new pulse sequence is proposed based on the modulation of distant dipolar field to recover high-resolution 2D spin-echo correlated spectroscopy (SECSY) from inhomogeneous fields.

Method and Material

By using the new sequence, the correlation information between coupled spins and the J coupled information with straightforward multiplet patterns can be obtained free from inhomogeneous line broadening. In addition, the new sequence is also suitable for non-J coupled spin systems. Although three-dimensional acquisition is needed, the evolution of indirect detection dimensions is carefully designed and the ultrafast acquisition scheme is utilized to improve the acquisition efficiency. A chemical solution of butyl methacrylate (C8H14O2) in DMSO (C2H6SO) in a deshimmed magnetic field was tested to demonstrate the implementation details of the new sequence. The performance of the new sequence relative to the conventional SECSY sequence was shown by using an aqueous solution of main brain metabolites in a deshimmed magnetic field.

Conclusion

The results reveal that the new sequence provides an attractive way to eliminate the inhomogeneous spectral line broadening for the spin-echo correlated spectrum and is a promising tool for the study of metabolites in metabonomics, even for the applications on in vivo and in situ high-resolution 2D NMR spectroscopy.  相似文献   

8.
Physiological activity and structural dynamics in arid and semi-arid ecosystems are driven by discrete inputs or pulses of growing season precipitation. Here we describe the short-term dynamics of ecosystem physiology in experimental stands of native (Heteropogon contortus) and invasive (Eragrostis lehmanniana) grasses to an irrigation pulse across two geomorphic surfaces with distinctly different soils: a Pleistocene-aged surface with high clay content in a strongly horizonated soil, and a Holocene-aged surface with low clay content in homogenously structured soils. We evaluated whole-ecosystem and leaf-level CO2 and H2O exchange, soil CO2 efflux, along with plant and soil water status to understand potential constraints on whole-ecosystem carbon exchange during the initiation of the summer monsoon season. Prior to the irrigation pulse, both invasive and native grasses had less negative pre-dawn water potentials ( pd), greater leaf photosynthetic rates (A net) and stomatal conductance (g s), and greater rates of net ecosystem carbon exchange (NEE) on the Pleistocene surface than on the Holocene. Twenty-four hours following the experimental application of a 39 mm irrigation pulse, soil CO2 efflux increased leading to all plots losing CO2 to the atmosphere over the course of a day. Invasive species stands had greater evapotranspiration rates (ET) immediately following the precipitation pulse than did native stands, while maximum instantaneous NEE increased for both species and surfaces at roughly the same rate. The differential ET patterns through time were correlated with an earlier decline in NEE in the invasive species as compared to the native species plots. Plots with invasive species accumulated between 5% and 33% of the carbon that plots with the native species accumulated over the 15-day pulse period. Taken together, these results indicate that system CO2 efflux (both the physical displacement of soil CO2 by water along with plant and microbial respiration) strongly controls whole-ecosystem carbon exchange during precipitation pulses. Since CO2 and H2O loss to the atmosphere was partially driven by species effects on soil microclimate, understanding the mechanistic relationships between the soil characteristics, plant ecophysiological responses, and canopy structural dynamics will be important for understanding the effects of shifting precipitation and vegetation patterns in semi-arid environments.  相似文献   

9.
The isotope exchange between35S-labeled sulfur compounds of sulfate (SO4 2–), elemental sulfur (S0), polysulfide (Sn 2–), hydrogen sulfide (HS: H2S + HS + S2–), iron sulfide (FeS), and pyrite (FeS2) was studied at pH 7.6 and 20 °C in anoxic, sterile seawater. Isotope exchange was observed between S0, S2 2– HS, and FeS, but not between35S labeled SO4 2– or FeS2 and the other sulfur compounds. Polysulfide mediated the isotope exchange between S0 and bisulfide (HS). The isotope exchange between S0 and Sn 2–) reached 50% of equilibrium within < 2 min while exchange between S2 2– and HS approached equilibrium within 0.5-1 h. In all the experiments HS, revealed a fraction exchange from 0.79 to 1.00. Isotope exchange between S2– and FeS took place only via S2 2– and/or HS. The isotope exchange between iron sulfide and the other sulfur compounds was not complete within 24 h as shown by a fraction exchange of 0.07–0.83. This lack of equilibrium (fraction exchange < 1) was due to the isotope exchange between dissolved compounds and surfaces of sulfur particles. The isotopic exchange reactions limit the usefulness of radiotracers in process studies of the inorganic sulfur species. Exchange reactions will also affect the stable isotope distribution among the sulfur species. The kinetics of the isotopic exchange reactions, however, depend on both pH and temperature.  相似文献   

10.
Virtually complete sequence specific 1H and 15N resonance assignments are presented for acid denatured reduced E. coli glutaredoxin 3. The sequential resonance assignments of the backbone rely on the combined use of 3D F1-decoupled ROESY-15N-HSQC and 3D 15N-HSQC-(TOCSY-NOESY)-15N-HSQC using a single uniformly 15N labelled protein sample. The sidechain resonances were assigned from a 3D TOCSY-15N-HSQC and a homonouclear TOCSY spectrum. The presented assignment strategy works in the absence of chemical exchange peaks with signals from the native conformation and without 13C/15N double labelling. Chemical shifts, 3J(H, NH) coupling constants and NOEs indicate extensive conformational averaging of both backbone and side chains in agreement with a random coil conformation. The only secondary structure element persisting at pH 3.5 appears to be a short helical segment comprising residues 37 to 40.Abbreviations HSQC heteronuclear single quantum coherence - NMR nuclear magnetic resonance - NOE nuclear Overhauser effect - NOESY two-dimensional NOE spectroscopy - ROE nuclear Overhauser effect in the rotating frame - ROESY two-dimensional ROE spectroscopy - TOCSY total correlation spectroscopy - TPPI time proportional phase incrementation Correspondence to: G. Otting  相似文献   

11.
Abstract

We have used one and two dimensional exchange 1H NMR spectroscopy to characterize the dynamics of the binding of a homodimeric thiazole orange dye, 1,1′-(4,4,8,8-tetramethyl-4,8-diaza-undecamethylene)-bis-4-(3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene)-quinolinium tetraiodide (TOTO), to double stranded DNA (dsDNA). The double stranded oligonucleotides used were d-(CGCTAGCG)2 ( 1 ) and d(CGCTAGCTAGCG)2 ( 2 ). TOTO binds preferentially to the (5′-CTAG-3′)2 sites and forms mixtures of 1:1 and 1:2 dsDNA-TOTO complexes with 2 in ratios dependent on the relative amount of TOTO and the oligonucleotide in the sample. The dynamic exchange between preferential binding sites in the case of a 2:1 1 -TOTO mixture is an intermolecular exchange process between two binding sites on different oligonucleotides. In the case of the 1:1 2 -TOTO complex an intramolecular exchange process occur between two different binding sites on the same strand. Both processes were studied. The results demonstrate the ability of TOTO to migrate along a dsDNA strand in an intramolecular exchange process. The migration process (“creeping”) along the DNA strand is 6 times faster than the rate of intermolecular exchange between sites in two different oligonucleotides.  相似文献   

12.
Gas exchange in San Francisco Bay   总被引:4,自引:4,他引:0  
Gas exchange across the air-water interface is one of the most important processes controlling the concentrations of dissolved gases in estuarine systems. A brief review of principles and equations to predict gas exchange indicates that both current shear and wind shear are possible sources of turbulence for controlling gas exchange rates in estuaries. Rates of exchange determined by constructing a mass balance for radon-222 indicate that wind shear is dominant in San Francisco Bay. Because many estuaries have wind shear and current speeds comparable to this system, this conclusion may be true for other systems as well. A compilation of gas exchange rates measured in San Francisco Bay with those for other wind-dominated systems updates previous compilations and yields an equation for predicting gas exchange: K l = 34.6 R v (Dm20)1/2 (U10)1.5 where R is the ratio of the kinematic viscosity of pure water at 20° C to the kinematic viscosity of water at the measured temperature and salinity, Dm20 is the molecular diffusivity of the gas of interest at 20°C in cm2 s–1, U10 is the wind speed at 10 meters above the surface in m s–1, and KL is the liquid phase gas transfer coefficient in m d–1. This relationship fits the available field data within 20% for wind speeds between 3 and 12 m s–1. It is used to show that the residence time of dissolved oxygen in San Francisco Bay should range from 2 days during windy summer periods to as much as 15 days during calm winter periods. Because these times are short compared to time constants for other processes controlling oxygen distribution in this system, dissolved oxygen concentrations in San Francisco Bay are usually near atmospheric equilibrium. Other systems, such as Chesapeake Bay, may differ. There, despite ample air-water gas exchange rates, some bottom waters become anoxic during summer months due to slow vertical mixing.  相似文献   

13.
Summary The red mangrove (Rhizophora mangle L.) occurs frequently in both scrub and fringe mangrove forests. Our previous study demonstrated that individuals of this mangrove species growing in scrub and fringe forests differ significantly in both morphological and physiological characteristics. To further characterize physiological differences between scrub and fringe mangroves, we compared their differences in water uptake and photosynthetic gas exchange during different seasons. In the wet season (June–October, 1990), scrub mangroves showed lower D and 18O values of stem water than fringe mangroves, indicating more usage of rain-derived freshwater. In the dry season (Jan–April, 1991), however, scrub mangroves utilized the same water source as fringe mangroves, reflected by their similar D and 18O values of stem water. Consistently, there were significant differences in predawn water potentials between scrub and fringe mangroves in the wet season (October 1990) with higher values for scrub mangroves, but no significant differences in the dry season (January 1991). Higher elevation in the scrub forest seems to be the major factor responsible for the shift of water sources in scrub mangroves. On Apr. 27 and Aug. 8, 1990, scrub mangroves showed lower CO2 assimilation rate, stomatal conductance, and intercellular CO2 concentration than fringe mangroves. There were no differences in these gas exchange characteristics on the other two measuring dates: Oct. 17, 1990 and Jan. 11, 1991. Instantaneous water use efficiency was significantly higher for scrub mangroves than for fringe mangroves on three of the four sampling dates. Similarly, leaf carbon isotope discrimination of scrub mangroves was always significantly lower than that of fringe mangroves, indicating higher long-term water use efficiency. Higher water use efficiency in scrub mangroves is a result of stomatal limitation on photosynthesis, which may entail considerable carbon cost to the plants.  相似文献   

14.

Aims

Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K+ and NH4 +, both high-demand nutrients.

Methods

A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K+ and NH4 +.

Results

Competitive cation exchange enabled low-demand cations that accumulate against roots (Ca2+, Mg2+, Na+) to desorb NH4 + and K+ from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH4 + and K+ aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations.

Conclusions

Diel plant water use and competitive cation exchange enhanced NH4 + and K+ availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.
  相似文献   

15.
Nuclear spin relaxation monitored by heteronuclear NMR provides a useful method to probe the overall and internal molecular motion for biological macromolecules over a variety of time scales. Nitrogen-15 NMR relaxation parameters have been recorded for the N-terminal domain of the rat T-cell antigen CD2 (CD2d1) in a dilution series from 1.20 mM to 40 M (pH 6.0, 25 °C). The data have been analysed within the framework of the model- free formalism of Lipari and Szabo to understand the molecular origin of severely enhanced transverse relaxation rates found for certain residues. These data revealed a strong dependence of the derived molecular correlation time c upon the CD2d1 protein concentration. Moreover, a number of amide NH resonances exhibited exchange broadening and chemical shifts both strongly dependent on protein concentration. These amide groups cluster on the major -sheet surface of CD2d1 that coincides with a major lattice contact in the X-ray structure of the intact ectodomain of rat CD2. The complete set of relaxation data fit well to an equilibrium monomer–dimer exchange model, yielding estimates of exchange rate constants (kON=5000 M-1 s-1; kOFF=7 s-1) and a dissociation constant (KD 3–6 mM) that is consistent with the difficulty in detecting the weak interactions for this molecule by alternative biophysical methods. The self-association of CD2d1 is essentially invariant to changes in buffer composition and ionic strength and the associated relaxation phenomena cannot be explained as a result of neglecting anisotropic rotational diffusion in the analysis. These observations highlight the necessity to consider low affinity protein self-association interactions as a source of residue specific exchange phenomena in NMR spectra of macromolecular biomolecules, before the assignment of more elaborate intramolecular conformational mechanisms.  相似文献   

16.
Lysophosphatidylcholine (LPC) has been reported to stimulate Na+-H+ exchange in rat cardiomyocytes. This action may be important in pathological conditions like ischemic injury where LPC is generated and Na+-H+ exchange activation is an important determinant of cardiac damage and dysfunction. It is unclear, however, if this stimulation of Na+-H+ exchange by LPC occurs through a direct action on the exchanger or through stimulation of a second messenger pathway. The purpose of the present investigation was to determine if lysolipids could directly affect Na+-H+ exchange. Purified cardiac sarcolemmal membranes were isolated and Na+-H+ exchange was measured by radioisotopic methods following addition of LPC. There were no effects of LPC on Na+-H+ exchange at LPC concentrations of 100 M at all reaction times examined. Lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), lysophosphatidylinositol (LPI) and lysoplasmenylcholine (LPEC) also did not alter Na+-H+ exchange at all concentrations and reaction times examined. We conclude that any stimulatory effects of lysolipids on Na+-H+ exchange do not occur through a direct action on the exchanger or its membrane lipid environment and must occur through a second messenger pathway.  相似文献   

17.
Exchange between conformational states is required for biomolecular catalysis, allostery, and folding. A variety of NMR experiments have been developed to quantify motional regimes ranging from nanoseconds to seconds. In this work, we describe an approach to speed up the acquisition of chemical exchange saturation transfer (CEST) experiments that are commonly used to probe millisecond to second conformational exchange in proteins and nucleic acids. The standard approach is to obtain CEST datasets through the acquisition of a series of 2D correlation spectra where each experiment utilizes a single saturation frequency to 1H, 15N or 13C. These pseudo 3D datasets are time consuming to collect and are further lengthened by reduced signal to noise stemming from the long saturation pulse. In this article, we show how usage of a multiple frequency saturation pulse (i.e., MF-CEST) changes the nature of data collection from series to parallel, and thus decreases the total acquisition time by an integer factor corresponding to the number of frequencies in the pulse. We demonstrate the applicability of MF-CEST on a Src homology 2 (SH2) domain from phospholipase Cγ and the secondary active transport protein EmrE as model systems by collecting 13C methyl and 15N backbone datasets. MF-CEST can also be extended to additional sites within proteins and nucleic acids. The only notable drawback of MF-CEST as applied to backbone 15N experiments occurs when a large chemical shift difference between the major and minor populations is present (typically greater than ~?8 ppm). In these cases, ambiguity may arise between the chemical shift of the minor population and the multiple frequency saturation pulse. Nevertheless, this drawback does not occur for methyl group MF-CEST experiments or in cases where somewhat smaller chemical shift differences occur are present.  相似文献   

18.
Differences in water binding were measured in the leaf cells ofMesembryanthemum crystallinum L. plants grown under high-salinity conditions by using nuclear-magnetic-resonance (NMR) imaging. The 7-Tesla proton NMR imaging system yielded a spatial resolution of 20·20·100 m3. Images recorded with different spin-echo times (4.4 ms to 18 ms) showed that the water concentrations in the bladder cells (located on the upper and lower leaf surface), in the mesophyll cells and in the water-conducting vessels were nearly identical. All of the water in the bladder cells and in the water-conducting vessels was found to be mobile, whilst part of the water in the mesophyll cells was bound. Patches of mesophyll cells could be identified which bound water more strongly than the surrounding mesophyll cells. Optical investigations of leaf cross-sections revealed two types of mesophyll cells of different sizes and chloroplast contents. It is therefore likely that in the small-sized mesophyll cells water is strongly bound. A long-term asymmetric water exchange between the mesophyll cells and the bladder cells during Crassulacean acid metabolism has been described in the literature. The high density of these mesophyll cells in the lower epidermis is a possible cause of this asymmetry.Abbreviations CAM Crassulacean acid metabolism - NMR nuclear magnetic resonance - TE spin-echo time  相似文献   

19.
Summary The effects of CO2 enrichment and water stress on gas exchange of Liquidambar styraciflua L. (sweetgum) and Pinus taeda L. (loblolly pine) seedlings were examined for individuals grown from seed under high (1000 mol·m-2·s-1) and low (250 mol·m-2·s-1) photosynthetic photon flux density at 350, 675 and 1000 l·l-1 CO2. At 8 weeks of age, half the seedlings in each CO2-irradiance treatment were subjected to a drying cycle which reduced plant water potential to about -2.5 MPa in the most stressed plants, while control plants remained well-watered (water potentials of -0.3 and -0.7 MPa for sweetgum and loblolly pine, respectively). During this stress cycle, whole seedling net photosynthesis, transpiration and stomatal conductance of plants from each CO2-irradiance-water treatment were measured under respective growth conditions.For both species, water stress effects on gas exchange were greatest under high irradiance conditions. Waterstressed plants had significantly lower photosynthesis rates than well-watered controls throughout most of the drying cycle, with the most severe inhibition occurring for low CO2, high irradiance-grown sweetgum seedlings. Carbon dioxide enrichment had little effect on gas exchange rates of either water-stressed or well-watered loblolly pine seedlings. In contrast, water stress effects were delayed for sweetgum seedlings grown at elevated CO2, particularly in the 1000 l·l-1 CO2, high irradiance treatment where net photosynthesis, transpiration and conductance of stressed plants were 60, 36 and 33% of respective control values at the end of the drying cycle. Development of internal plant water deficits was slower for stressed sweetgum seedlings grown at elevated CO2. As a result, these seedlings maintained higher photosynthetic rates over the drying cycle than stressed sweetgum seedlings grown at 350 l·l-1 CO2 and stressed loblolly pine seedlings grown at ambient and enriched CO2 levels. In addition, water-stressed sweetgum seedlings grown at elevated CO2 exhibited a substantial increase in water use efficiency.The results suggest that with the future increase in atmospheric CO2 concentration, sweetgum seedlings should tolerate longer exposure to low soil moisture, resulting in greater first year survival of seedlings on drier sites of abandoned fields in the North Carolina piedmont.  相似文献   

20.
Ion exchange properties of plant root cell walls   总被引:1,自引:0,他引:1  
Meychik  N.R.  Yermakov  I.P. 《Plant and Soil》2001,234(2):181-193
Acid-base properties and the swelling capacity of wheat, lupin and pea root cell walls were investigated. Roots of seedlings and green plants of different age were analysed by the potentiometric method. The ion exchange capacity (S i) and the swelling coefficient (K cw) of root cell walls were estimated at various pH values (from 2 to 12) and at different ionic strength (between 0.3 and 1000 mM). To analyse the polysigmoid titration curves pHi = f (S i), the Gregor's equation was employed. It was shown that the Gregor's model fits well the experimental data. The total number of the cation exchange (S t cat) and the anion exchange (S t an) groups were determined in the root cell walls. The number of the functional group of each type (S j) was estimated, and the corresponding values of pK a j were calculated. It was shown that for all types of cation exchangeable groups arranged in the cell wall structure the acid properties are enhanced by the increasing concentration of electrolyte. For each ionogenic group the coefficients of Helfferich's equation [pK a j = f (C K+)] were determined. It was found that the swelling of root cell walls changes with pH, C K+ and strongly depends on plant species. Within the experimental pH and C K+ range the swelling coefficient changes as follows: lupin > pea > wheat. The obtained results show that for the plant species under investigation the differences in the swelling coefficients originate from (a) the differences in the cross-linking degrees of polymeric chains arranged in the cell wall structure, (b) the differences in the number of carboxyl groups and (c) the differences in the total number of functional groups. Based on the estimated swelling coefficients in water it could be inferred that for wheat the cross-linking degree of the polymeric chains in the root cell walls is higher than those for lupin or pea. It has been emphasized that the calculated parameters (S j, pK a j, K cw), the equation {pK a j = f (CK+)} and the dependencies {K cw = f (CK+, pH)} allow to estimate quantitatively the changes in the ion exchange capacity of the root cell walls in response to the changes in an ionic composition of an outer solution. The results of these estimations allow to suggest that (a) the root apoplast is a compartment where the accumulation of cations takes place during the first stage of cation uptake from an outer medium, and (b) the accumulation degree is defined by pH and ionic composition of an outer solution. On the basis of the literature review and the results of the present experimental study it was proposed that the changes in the cell wall swelling in response to variances of environmental or experimental conditions could lead to a change of the water flow through a root apoplast. It has been supported that there is direct relationship between the swelling of root cell walls and the water flow within the plant root apoplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号