首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interconversion of L- and D-proline catalyzed by proline racemase has been studied. The entire time course of the approach to equilibrium has been followed. After a short time the product concentration is significant, and the reaction runs under reversible conditions. As the total substrate concentration is increased, the system moves from the unsaturated regime into the saturated regime. At very high substrate levels under the reversible conditions used, the rate constant for substrate racemization falls, as the system moves into the "oversaturated" regime. Here, the net rate of the enzyme-catalyzed reaction is limited by the rate of return of the free enzyme from the form that liberates product back to the form that binds substrate. The results are analyzed in terms of the simple mechanism (table; see text) and illustrate the additional information that is available from reactions studied under reversible conditions. In the unsaturated region the value of the second-order rate constant kU (equivalent to kcat/Km) is 9 X 10(5) M-1 s-1 in each direction. In the saturated region, kcat = kcat = 2600 s-1 and Km = 2.9 mM. In the oversaturated region, the rate constant kO is 81 M s-1. The substrate concentration at which unsaturated and saturated terms contribute equally is 2.9 mM, and the substrate concentration at which saturated and oversaturated terms contribute equally is 125 mM.  相似文献   

2.
3.
Summary Mutants ofSalmonella typhimurium deficient in D-amino acid dehydrogenase were isolated in histidine auxotrophs able to utilize D-histidine(his-dhuA) 1. The mutants have lost the ability to utilize D-histidine and D-methionine due to mutations in the locusdadA mapped in co-transducible vicinity of the genehemA. ThedadA mutants were unable to deaminate D-histidine, D-methionine, D-alanine and several other D-amino acids to the respective keto products. Indad + strains the enzyme activity was the highest in toluenized cells. In crude sonieates it was 5 to 10 times less. Reduction of artificial electron accepters in the presence of D-amino acids behaved similarly. Keto product formation was strongly inhi-bited by cyanide. It has been concluded thereof that the deaminating enzyme is a D-amino acid dehydrogenase, the activity of which depends on structural integrity of a cell component or on a structure-bound electron accepter. The enzyme activity was inducible by adding L-or D-alanine to growth media. The induction was the highest in media with poor carbon sources. A temperature-sensitivedadA mutant was isolated. I t mapped indadA and had thermolabile D-amino acid dehydrogenase. This has indicated thatdadA is structural gene for the D-amino acid dehydrogenase. This work was supported by the Polish Academy of Sciences within the project 09.3.1., and by the U.S. Public Health Service, grant No. 05-032-1. The nomenclature rules for describing genotypes and phenotypes of Demerecet al. (1966) were followed throughout this paper. E.g.dhuA hisP+ mutants have Dhu+ phenotype, those with dhuAs - hisP s - mutations are phenotypically Dhu- All strains with wild-type dhuA+ lOCUS are Dhu.  相似文献   

4.
5.
To test whether a reaction involving the making and/or breaking of two bonds at two sites is concerted (and proceeds through a single transition state) or is stepwise (and involves a reaction intermediate in which only one bond has been made or broken), we have measured the isotopic fractionation at one site as a function of isotopic substitution at the other site. In the case of proline racemase, the discrimination against solvent deuterium in the product when the reaction is run in mixed H2O-D2O is measured for the reaction both of [2-1H]proline and of [2-2H]proline. The isotopic fractionation at the solvent site may in principle be smaller, the same, or larger, when the 2H-labeled substrate is used rather than the 1H substrate, and--depending upon the nature of the catalyzing groups--this information indicates whether the reaction is stepwise, or concerted, or whether an isotopically insensitive transition state is partially rate determining. Experimentally, we have found that the discrimination against solvent deuterium in the product L-proline is the same, whether D-[2-1H]proline or D-[2-2H]proline is the substrate. This result requires that the substrate and product "on-off" steps are faster than the racemization step and that the racemization reaction proceeds either in a concerted manner or in a stepwise fashion involving enzyme catalytic groups (e.g., thiols) having ground-state fractionation factors around 0.5.  相似文献   

6.
The fractionation factors of protons bound to the essential catalytic groups in proline racemase have been determined by comparison of the time courses of two competitive deuterium washout experiments. The rate of achievement of the maximum perturbation in the optical rotation has been measured in the oversaturated region (that is, at high substrate concentrations) under two conditions: in the first, we start with an equimolar mixture of deuterated substrate S' and of unlabeled product P; in the second, we again start with equal concentrations of substrate and product, but the concentration of the deuterated material S' is less than 20% that of S. The different concentrations of deuterated substrate produce different levels of deuteration of the enzyme's catalytic groups, the kinetic consequence of which allow the fractionation factors of these enzymic groups to be determined. The observed values for the fractionation factors of the enzyme's groups of 0.55 +/- 0.1 are only consistent with these groups' being thiols. This conclusion is supported by results of measurements of the solvent isotope effect determined in the unsaturated regime. These findings confirm the earlier suggestion of Abeles and his group that two cysteine residues mediate the catalysis of proline racemization by this enzyme.  相似文献   

7.
In this study, the effects of three surfactants, i.e. the anionic biosurfactant dirhamnolipid (diRL), the cationic surfactant hexadecyltrimethyl ammonium bromide (CTAB), and the anionic surfactant sodium dodecyl sulfate (SDS), on the removal of phenol catalyzed by laccase were studied first. CTAB and SDS were detrimental, while diRL improved phenol removal and was selected for detailed research. The biosurfactant increased the activity of laccase and the removal of phenol with the increase of diRL concentrations from 10.6 to 318 μM. DiRL at 318 μM improved the removal when the initial concentrations of phenol were from 50 to 400 mg/l. In particular, the removal of phenol with 318 μM diRL was 4.3–6.4 folds that of the controls within 24 h when the initial concentration of phenol was 400 mg/l. The presence of diRL at 318 μM also caused the complete removal (above 98%) of phenol at concentrations from 50 to 400 mg/l after 24 h. The enhancement of phenol removal was over a wide range of pH and temperatures, and the highest removal efficiency was obtained at pH 6.0 and 50°C. The results suggest that diRL had potential application in the enhancement of phenols removal catalyzed by laccase in water treatment or remediation.  相似文献   

8.
The isotope effects for the interconversion of L-proline and D-proline, catalyzed by proline racemase, have been determined in the saturated region with both [2-2H]proline and [2-3H]proline. The deuterium fractionation factors for each of the protons in flight have been obtained from two kinds of experiment: by measuring the rate of racemization of one [2-2H]proline enantiomer as it racemizes into an equilibrated pool of unlabeled proline and by measuring the deuterium content of a proline sample at the optical rotation maximum that occurs when an equimolar mixture of one deuterium-labeled enantiomer and the other unlabeled enantiomer runs to equilibrium. The tritium fractionation factors for each of the protons in flight have been determined from measurements of the rate of loss of tritium to the solvent as one [2-3H]proline enantiomer runs to equilibrium. Good agreement is found among the fractionation factors determined by each method. The deuterium fractionation factors for the two protons are not identical: that for the proton derived from L-proline is 0.375 and that for the proton derived from D-proline is 0.44. This difference has been confirmed by a double-competition experiment in which the optical rotation of a mixture of DL-[2-2H]proline and unlabeled DL-proline is followed with time. The rotation (initially zero) passes through a maximum, from which the ratio of the two fractionation factors (0.86) is obtained. These data, coupled with the equilibrium fractionation factor for the 2-position of proline (which has been determined to be 1.17), provide the transition-state factors for each of the in-flight protons, and delineate the nature of the transition state(s) for the enzyme-catalyzed racemization.  相似文献   

9.
The interaction of radiation-generated · OH radicals with ferrimyoglobin in deaerated aqueous solution at neutral pH has been quantitatively studied. Changes in the visible absorption spectrum have been analyzed on the basis of composition changes of the ferri, deoxy, and ferriperoxide forms of the metalloprotein. A postirradiation thermal process must be considered in order to evaluate the radical-induced composition changes. Initially, ·OH induces reduction of ferrimyoglobin to the deoxy form with a G value (molecular yield/100 eV of absorbed energy) in the zero-dose limit of 1.4 (±0.2). Radiation-generated H2O2 reacts with the ferrimyoglobin substrate to produce ferrimyoglobin peroxide with a G value of 0.7 (±0.1) in the zero-dose limit. At doses of >1 krad μm?1 of myoglobin present, the composition of the three myoglobin derivatives reaches a radiolysis steady state. In this moderate-dose plateau region, this composition is 44% ferri, 18% deoxy, and 38% ferri peroxide. The · OH-induced hemoprotein radicals that do not initiate 1-eq redox conversions undergo reactions that generate dimer and other globin-modified material.  相似文献   

10.
11.
The fate of the alpha-hydrogen of mandelate in the reaction catalyzed by mandelate racemase has been investigated by a mass spectroscopic method. The method entails the incubation of (R)- or (S)-[alpha-1H]mandelate in buffered D2O to a low extent of turnover (about 5-8%), esterification of the resulting mixture of mandelates with diazomethane, derivatization of the methyl esters with a chiral derivatizing agent, and quantitation of the isotope content of the alpha-hydrogen of both substrate and product by gas chromatography/mass spectrometric analysis. No significant substrate-derived alpha-protium was found in the product for racemization in either direction. In addition, in the (R) to (S) direction almost no exchange (less than or equal to 0.4%) of the alpha-hydrogen in the remaining (R) substrate pool occurred, but in the (S) to (R) direction 3.5-5.1% exchange of the alpha-hydrogen in the remaining substrate (after 5.1-7.2% net turnover) was found. Qualitatively similar results were obtained in the (S) to (R) direction in H2O when (S)-[alpha-2H]mandelate was used as substrate. In other experiments, an overshoot in the progress curve was observed when the racemization of either enantiomer of [alpha-1H]mandelate in D2O was monitored by following the change in ellipticity of the reaction mixture; the magnitude of the overshoot was greater in the (R) to (S) than in the (S) to (R) direction. All of the available data indicate that the reaction catalyzed by mandelate racemase proceeds by a two-base mechanism, in contrast to earlier proposals.  相似文献   

12.
Iwig DF  Grippe AT  McIntyre TA  Booker SJ 《Biochemistry》2004,43(42):13510-13524
Cyclopropane fatty acid (CFA) synthases catalyze the formation of cyclopropane rings on unsaturated fatty acids (UFAs) that are natural components of membrane phospholipids. The methylene carbon of the cyclopropane ring derives from the activated methyl group of S-adenosyl-L-methionine (AdoMet), affording S-adenosyl-L-homocysteine (AdoHcys) and a proton as the remaining products. This reaction is unique among AdoMet-dependent enzymes, because the olefin of the UFA substrate is isolated and unactivated toward nucleophilic or electrophilic addition, raising the question as to the timing and mechanism of proton loss from the activated methyl group of AdoMet. Two distinct reaction schemes have been proposed for this transformation; however, neither was based on detailed in vitro mechanistic analysis of the enzyme. In the preceding paper [Iwig, D. F. and Booker, S. J. (2004) Biochemistry 43, http://dx.doi.org/10.1021/bi048693+], we described the synthesis of two analogues of AdoMet, Se-adenosyl-L-selenomethionine (SeAdoMet) and Te-adenosyl-L-telluromethionine (TeAdoMet), and their intrinsic reactivity toward polar chemistry in which AdoMet is known to be involved. We found that the electrophilicity of AdoMet and its onium congeners followed the series SeAdoMet > AdoMet > TeAdoMet, while the acidity of the carbons adjacent to the relevant heteroatom followed the series AdoMet > SeAdoMet > TeAdoMet. When each of these compounds was used as the methylene donor in the CFA synthase reaction, the kinetic parameters of the reaction, k(cat) and k(cat) K(M)(-1), followed the series SeAdoMet > AdoMet > TeAdoMet, suggesting that the reaction takes place via methyl transfer followed by proton loss, rather than by processes that are initiated by proton abstraction from AdoMet. Use of S-adenosyl-L-[methyl-d(3)]methionine as the methylene donor resulted in an inverse isotope effect of 0.87 +/- 0.083, supporting this conclusion and also indicating that the methyl transfer takes place via a tight s(N)2 transition state.  相似文献   

13.
DNA phosphotriester adducts are common alkylation products of DNA phosphodiester moiety induced by N-nitrosoureas. The 2-hydroxyethyl phosphotriester was reported to hydrolyze more rapidly than other alkyl phosphotriesters both in neutral and in alkaline conditions, which can cause DNA single strand scission. In this work, DFT calculations have been employed to map out the four lowest activation free-energy profiles for neutral and alkaline hydrolysis of triethyl phosphate (TEP) and diethyl 2-hydroxyethyl phosphate (DEHEP). All the hydrolysis pathways were illuminated to be stepwise involving an acyclic or cyclic phosphorane intermediate for TEP or DEHEP, respectively. The rate-limiting step for all the hydrolysis reactions was found to be the formation of phosphorane intermediate, with the exception of DEHEP hydrolysis in alkaline conditions that the decomposition process turned out to be the rate-limiting step, owing to the extraordinary low formation barrier of cyclic phosphorane intermediate catalyzed by hydroxide. The rate-limiting barriers obtained for the four reactions are all consistent with the available experimental information concerning the corresponding hydrolysis reactions of phosphotriesters. Our calculations performed on the phosphate triesters hydrolysis predict that the lower formation barriers of cyclic phosphorane intermediates compared to its acyclic counter-part should be the dominant factor governing the hydrolysis rate enhancement of DEHEP relative to TEP both in neutral and in alkaline conditions.
Figure
DEHEP hydrolysis involved in DNA single strand scission induced by N-nitrosoureas  相似文献   

14.
The partitioning of pristinamycins was studied in dextran and polyethylene glycol (PEG) aqueous two-phases systems. Pristinamycins partitioned preferentially into the PEG-rich top phase. The partition coefficient was independent of molar mass of PEG and dextran and of antibiotic concentration, but, increased exponentially with the tieline length of the system. Partition of pristinamycins was greatly improved when fatty acids esters of PEG were mixed with PEG. In such mixtures, the partition of coefficient increased up to a value of 24, dependent on the carbon chain length of fatty acids and the modified PEG concentrations. Moreover, in such system, the two groups of pristinamycins, I and II, were extracted in accordance with their hydrophobicity. Recovery of pristinanamycins produced by Streptomyces pritinaespiralis in a fermentation broth was achieved with a dextran/PEG system. Cells were confined into the bottom phase and pristinamycins partitioned in the top phase. However, due to binding of the pristinamycins to the cells, the partition coefficient was slightly lower than of pure antibiotics solutions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
The formation of tubules by p-tert-butylphenylamide derivatives of chenodeoxycholic and ursodeoxycholic acids in aqueous solution is investigated. The critical aggregation concentrations of the new surfactants are much lower than those of ursodeoxycholate and chenodeoxycholate, indicating the enhanced surfactant properties resulting by the presence of the hydrophobic p-tert-butylphenyl group. The molecular areas at the air-water interface suggest the formation of monolayer films with molecules upright oriented. The shape of the aggregates was investigated by TEM. The main structure present in solution corresponds to tubules. The estimated value for the wall thickness of tubules suggests that a bilayer structure is formed. Host of positively charged latex beads by tubules suggests that their inner and outer surfaces are negatively charged. The acid form of the chenodeoxycholate derivative was recrystallized from toluene and its crystal structure analyzed.  相似文献   

16.
To elucidate the petromyzontid speciation process, the genetic independence of the fluvial non-parasitic populations within the anadromous parasitic Lethenteron camtschaticum was estimated by using polymorphic microsatellite loci. Abundant gene flow was revealed in multitemporal scales between potentially sympatric populations, suggesting ongoing gene flow resulting from imperfect size-assortative mating between them and plastic determination of life histories. On the contrary, landlocked fluvial non-parasitic populations in the upper region of dams were genetically divergent from anadromous parasitic populations. The temporal heterogeneity of gene flow, i.e. contemporary little gene flow but significant gene flow over the long-term between the landlocked fluvial non-parasitic and anadromous parasitic populations was elucidated. In addition, the divergence time of isolation of the landlocked populations from the ancestral anadromous parasitic population was estimated to have occurred 17.9-428.2 years ago, which includes the construction times of an initial dam c. 90 years ago. These instances indicate that the landlocked populations should have very recently been established, and subsequent accumulation of divergence and development of reproductive isolation are predicted. The present landlocked fluvial non-parasitic populations should be analogous to the founder populations in terms of petromyzontid speciation. The data also strongly support the hypothesis of multitemporal and multispatial speciation in the petromyzontid stem-satellite species complex.  相似文献   

17.
A detailed photophysical study of the fluorescence quenching (transient and steady state) of the macrolide antibiotic filipin by nitroxide-substituted fatty acids and a cholesterol derivative was carried out, aimed at determining its transverse position in a model system of membranes (multilamellar vesicles of dipalmitoylphosphatidylcholine). Filipin partitions efficiently into membranes (Kp = (5.0 +/- 1.0).10(3), 20 degrees C) and it was concluded that the antibiotic is buried in the membrane, away from the lipid-water interface. In addition, information on the organization of the quenchers was also obtained. The 5-nitroxide derivative of the fatty acid is essentially randomly distributed, while the 16-nitroxide is aggregated at concentrations higher than approximately 5% molar. For the cholesterol compound the results point to a phase separation at concentrations higher than 3% molar (below this limit concentration filipin associates with the derivatized sterol with KA = 20 M-1, assuming a 1:1 interaction). We propose that this phase separation and the aggregation state of filipin in the aqueous solution may be key processes in the antibiotic mode of action. A systematic and general approach to fluorescence quenching data analysis in complex (e.g., biochemical) systems is also presented.  相似文献   

18.
We demonstrated several kinds of D-amino acids in plant seedlings, and moreover alanine racemase (E.C.5.1.1.1) in alfalfa (Medicago sativa L.) seedlings. This is the first evidence for the presence of amino acid racemase in plant. The enzyme was effectively induced by the addition of L- or D-alanine, and we highly purified the enzyme to show enzymological properties. The enzyme exclusively catalyzed racemization of L- and D-alanine. The K(m) and V(max) values of enzyme for L-alanine were 29.6 x 10(-3) M and 1.02 mol/s/kg, and those for D-alanine are 12.0 x 10(-3) M and 0.44 mol/s/kg, respectively. The K(eq) value was estimated to be about 1 and indicated that the enzyme catalyzes a typical racemization of both enantiomers of alanine. The enzyme was inactivated by hydroxylamine, phenylhydrazine and some other pyridoxal 5'-phosphate enzyme inhibitors. Accordingly, the enzyme required pyridoxal 5'-phosphate as a coenzyme, and enzymologically resembled bacterial alanine racemases studied so far.  相似文献   

19.
Pinon V  Ravanel S  Douce R  Alban C 《Plant physiology》2005,139(4):1666-1676
Biochemical and molecular characterization of the biotin biosynthetic pathway in plants has dealt primarily with biotin synthase. This enzyme catalyzing the last step of the pathway is localized in mitochondria. Other enzymes of the pathway are however largely unknown. In this study, a genomic-based approach allowed us to clone an Arabidopsis (Arabidopsis thaliana) cDNA coding 7-keto-8-aminopelargonic acid (KAPA) synthase, the first committed enzyme of the biotin synthesis pathway, which we named AtbioF. The function of the enzyme was demonstrated by functional complementation of an Escherichia coli mutant deficient in KAPA synthase reaction, and by measuring in vitro activity. Overproduction and purification of recombinant AtbioF protein enabled a thorough characterization of the kinetic properties of the enzyme and a spectroscopic study of the enzyme interaction with its substrates and product. This is the first characterization of a KAPA synthase reaction in eukaryotes. Finally, both green fluorescent protein-targeting experiments and western-blot analyses showed that the Arabidopsis KAPA synthase is present in cytosol, thus revealing a unique compartmentation of the plant biotin synthesis, split between cytosol and mitochondria. The significance of the complex compartmentation of biotin synthesis and utilization in the plant cell and its potential importance in the regulation of biotin metabolism are also discussed.  相似文献   

20.
The synthesis of the octapeptide, benzyloxycarbonyl-(α-aminoisobutyryl-L-prolyl)4-methyl ester [Z-(Aib-Pro)4-OMe] and an analysis of its solution conformation is reported. The octapeptide is shown to possess three strong intramolecular hydrogen bonds on the basis of studies of the solvent and temperature dependence of NH chemical shifts and rates of hydrogen–deuterium exchange. 13C studies are consistent with a structure involving only trans Aib-Pro bonds, while ir experiments support a hydrogen-bonded conformation. The Aib 3, 5, and 7 NH groups are shown to participate in hydrogen bonding. A 310 helical conformation compatible with the spectroscopic data is suggested. The proposed conformation consists of three type III β-turns with Aib and Pro at the corners and stabilized by 4 → 1 intramolecular hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号