首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9), [Aca(-1),DArg0,Hyp3,Thi5,DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa(-1),DArg0,Hyp3,Thi5,(2-DNal)7,Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-d6 and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8 peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a beta-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N-Bzl)Gly8 in analogue 1 suggests type VI beta-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb beta-turn comprising residues Ser6-Arg9 and the betaI or betaII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I beta-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

2.
The conformation of bradykinin (BK), Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9, was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and Monte Carlo simulation in two different media, i.e. in pure aqueous solution and in the presence of phospholipid vesicles. Monolamellar liposomes are a good model for biological membranes and mimic the environment experienced by bradykinin when interacting with G-protein coupled receptors (GPCRs). The NMR spectra showed that lipid bilayers induced a secondary structure in the otherwise inherently flexible peptide. The results of ensemble calculations revealed conformational changes occurring rapidly on the NMR time scale and allowed for the identification of different families of conformations that were averaged to reproduce the NMR observables. These structural results supported the hypothesis of the central role played by the peptide C-terminal domain in biological environments, and provided an explanation for the different biological behaviours observed for bradykinin.  相似文献   

3.
High affinity peptide ligands for the bradykinin (BK) B(2) subtype receptor have been shown to adopt a beta-turn conformation of the C-terminal tetrapeptide (H-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH). We investigated the replacement of the Pro(7)-Phe(8) dipeptide moiety in BK or the D-Tic(7)-Oic(8) subunit in HOE140 (H-D-Arg(0)-Arg(1)-Pro(2)-Hyp(3)-Gly(4)-Thi(5)-Ser(6)-D-Tic(7)-Oic(8)-Arg(9)-OH) by 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one templates (Aba). Binding studies to the human B(2) receptor showed a correlation between the affinities of the BK analogs and the propensity of the templates to adopt a beta-turn conformation. The L-spiro-Aba-Gly containing HOE140 analog BK10 has the best affinity, which correlates with the known turn-inducing property of this template. All the compounds did not modify basal inositolphosphate (IP) output in B(2)-expressing CHO cells up to 10 microM concentration. The antagonist properties were confirmed by the guinea pig ileum smooth muscle contractility assay. The new amino-benzazepinone (Aba) substituted BK analogs were found to be surmountable antagonists.  相似文献   

4.
1. Bradykinin (Bk; Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg8) inactivation by bulk isolated neurons from rat brain is described. 2. Bk is rapidly inactivated by neuronal perikarya (4.2 +/- 0.6 fmol/min/cell body). 3. Sites of inactivating cleavages, determined by a kininase bioassay combined with a time-course Bk-product analysis, were the Phe5-Ser6, Pro7-Phe8, Gly4-Phe5, and Pro3-Gly4 peptide bonds. The cleavage of the Phe5-Ser6 bond inactivated Bk at least five fold faster than the other observed cleavages. 4. Inactivating peptidases were identified by the effect of inhibitors on Bk-product formation. The Phe5-Ser6 bond cleavage is attributed mainly to a calcium-activated thiol-endopeptidase, a predominantly soluble enzyme which did not behave as a metalloenzyme upon dialysis and was strongly inhibited by N-[1(R,S)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate and endo-oligopeptidase A antiserum. Thus, neuronal perikarya thiol-endopeptidase seems to differ from endo-oligopeptidase A and endopeptidase 24.15. 5. Endopeptidase 24.11 cleaves Bk at the Gly4-Phe5 and, to a larger extent, at the Pro7-Phe8 bond. The latter bond is also cleaved by angiotensin-converting enzyme (ACE) and prolyl endopeptidase (PE). PE also hydrolyzes Bk at the Pro3-Gly4 bond. 6. Secondary processing of Bk inactivation products occurs by (1) a rapid cleavage of Ser6-Pro7-Phe8-Arg8 at the Pro7-Phe8 bond by endopeptidase 24.11, 3820ACE, and PE; (2) a bestatin-sensitive breakdown of Phe8-Arg9; and (3) conversion of Arg1-Pro7 to Arg1-Phe5, of Gly4-Arg9 to both Gly4-Pro7 and Ser6-Arg9, and of Phe5-Arg9 to Ser6-Arg9, Phe8-Arg9, and Ser6-Pro7, by unidentified peptidases. 7. A model for the enzymatic inactivation of bradykinin by rat brain neuronal perikarya is proposed.  相似文献   

5.
A T Orawski  W H Simmons 《Peptides》1989,10(5):1063-1073
Bradykinin (BK) (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) was degraded by rat brain synaptic membranes at a rate comparable to that found for Met-enkephalin, but approximately 40 times the rate for vasopressin and oxytocin. The catabolic pathway for BK and its metabolites was elucidated through the use of high performance liquid chromatography for metabolite identification and peptidase inhibitors for blocking specific cleavage sites. BK was hydrolyzed at three sites: at the -Phe5-Ser6- bond by metalloendopeptidase 24.15, at the -Pro7-Phe8- bond by an apparently novel peptidyl dipeptidase, and at the -Phe8-Arg9 bond by a carboxypeptidase B-like enzyme. Each enzyme contributed about equally to BK degradation under the assay conditions used. Some of the resulting metabolites were further hydrolyzed: BK(1-8) to BK(1-7) + Phe by a DFP inhibitable prolyl carboxypeptidase-like enzyme, BK(1-8) to BK(1-5) + BK(6-8) by metalloendopeptidase 24.15, BK(1-7) slowly to BK(1-5) by a second peptidyl dipeptidase which was captopril inhibited, and Phe-Arg to Phe + Arg by a bestatin-inhibited dipeptidase. A number of properties of the individual enzymes were determined including sensitivity to a variety of peptidase inhibitors. These results provide a starting point for investigating the potential physiological role of each enzyme in BK function in the brain.  相似文献   

6.
The conformational features of Pam-Lys(0)-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH (PKD) and Pam-Gly(-1)-Lys(0)-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH (PGKD), the Pam-Lys and Pam-Gly-Lys analogues of bradykinin, have been determined by high-resolution NMR in a zwitterionic lipoid environment. Radical-induced relaxation of the (1)H NMR signals was used to probe the topological orientation of the peptides with respect to the zwitterionic lipid interface. The radical-induced relaxation and molecular dynamics (MD) data indicated that the palmitic acid and N-terminal amino acid residues embed into the micelles, while the rest of the polypeptide chain is closely associated with the water-micelle interface. Throughout the entire nuclear Overhauser effect restrained MD simulation, a nonideal type I beta-turn was observed in the C-terminus of PKD between residues 6 and 9, and a gamma-turn was observed in the C-terminus of PGKD between residues 6 and 7. Therefore, the additional glycine has a dramatic effect on the structural preferences of the biologically important C-terminus, an effect brought about by the interaction with the lipid environment. These structural features are correlated to the biological activity at the bradykinin B2 receptor.  相似文献   

7.
Three peptides, B-10148 (Lys-1-Lys0-Arg1-Pro2-Hyp3-Gly4-Igl5-Ser6- DF5F7-Oic8; where Hyp is trans-4-hydroxyproline, Igl is alpha-(2-indanyl)glycine, F5F is 2,3,4,5,6-pentafluorophenylalanine and Oic is (3aS,7aS)-octahydroindole-2-carboxylic acid), B-10206 (DArg0-Arg1-Pro2-Hyp3-Gly4-Igl5-Ser6-DF 5F7-Nc7G8-Arg9; where Nc7G is N-cycloheptylglycine) and B- 10284 (Arg1-Pro2-Pro3-Gly4-Phe5-Thr6-DTic7-Oic8- NH2; where Tic is 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), were studied in detail by NMR spectroscopy in 60% CD3OH /40% H2O and modeled by a simulated annealing protocol to determine their solution structure. B-10148, an extremely potent BK B1 receptor antagonist with very high BK B2 receptor antagonist activity, despite lacking a C-terminal Arg, displayed an ideal type II beta-turn from Pro2 to Igl5, as well as a salt bridge between the guanidino group of Arg1 and the carboXylate group of Oic8. B-10206, the most potent B2 antagonist, also displayed an ideal type II beta-turn from Pro2 to Igl5 but secondary structure was not observed at the C-terminal end. The third peptide, B-10284, a des-Arg9 analog with a C-terminal amide and a very potent B2 antagonist, had no definite solution structure. The high activity of these peptides emphasizes the importance of the N-terminal beta-turn and the hydrophobic character at the C-terminus in determining the activity of bradykinin antagonists.  相似文献   

8.
Theoretical conformational analysis was used to study the spatial structure and conformational properties of the bovine adrenal medulla dodecapeptide BAM-12P (Tyr1-Gly2-Gly3-Phe4-Met5-Arg6-Arg7-Val8-Gly9-Arg10-Pro11-Glu12). Twenty-three low-energy conformations of the BAM-12P backbone were shown to represent the spatial structure of the peptide. The inverse structural problem was solved, and synthetic analogues of BAM-12P were proposed, the spatial structures of which correspond to a set of low-energy potentially physiologically active conformations of the natural dodecapeptide. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

9.
Theoretical conformational analysis was used to study the spatial structure and conformational properties of the bovine adrenal medulla dodecapeptide BAM-12P (Tyr1-Gly2-Gly3-Phe4-Met5-Arg6-Arg7-Val8-Gly9-Arg10-Pro11-Glu12). Twenty-three low-energy conformations of the BAM-12P backbone were shown to represent the spatial structure of the peptide. The inverse structural problem was solved, and synthetic analogues of BAM-12P were proposed, the spatial structures of which correspond to a set of low-energy potentially physiologically active conformations of the natural dodecapeptide.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 245–250.Original Russian Text Copyright © 2005 by Akhmedov, Tagiev, Hasanov, Makhmudova.  相似文献   

10.
The peptide hormone bradykinin (BK) (Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)) and its shorter homolog BK(1-5) (Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)) were labeled with the extrinsic fluorescent probe ortho-aminobenzoic acid (Abz) bound to the N-terminal and amidated in the C-terminal carboxyl group (Abz-BK-NH(2) and Abz-BK(1-5)-NH(2)). The fragment des-Arg(9)-BK was synthesized with the Abz fluorescent probe attached to the 3-amino group of 2,3-amino propionic acid (DAP), which positioned the Abz group at the C-terminal side of BK sequence, constituting the peptide des-Arg(9)-BK-DAP(Abz)-NH(2). The spectral characteristics of the probe were similar in the three peptides, and their fluorescent properties were monitored to study the interaction of the peptides with anionic vesicles of dimyristoylphosphatidylglycerol (DMPG). Time-resolved fluorescence experiments showed that the fluorescence decay of the peptides was best described by double-exponential kinetics, with mean lifetimes values around 8.0 ns in buffer pH 7.4 that increased about 10% in the presence of DMPG vesicles. About a 10-fold increase, compared with the values in aqueous solution, was observed in the steady-state anisotropy in the presence of vesicles. A similar increase was also observed for the rotational correlation times obtained from time-resolved anisotropy decay profiles, and related to the overall tumbling of the peptides. Equilibrium binding constants for the peptide-lipid interaction were examined monitoring anisotropy values in titration experiments and the electrostatic effects were evaluated through Gouy-Chapman potential calculations. Without corrections for electrostatic effects, the labeled fragment Abz-BK(1-5)-NH(2) presented the major affinity for DMPG vesicles. Corrections for the changes in peptide concentration due to electrostatic interactions suggested higher affinity of the BK fragments to the hydrophobic phase of the bilayer.  相似文献   

11.
Nonpeptide antagonists for kinin receptors   总被引:1,自引:0,他引:1  
Kinins are a family of small peptides acting as mediators of inflammation and pain in the peripheral and central nervous system. The two main 'kinins' in mammals are the nonapeptide bradykinin (BK, Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) and the decapeptide kallidin (KD, [Lys0]-BK, Lys1-Arg2-Pro3-Pro4-Gly5-Phe6-Ser7-Pro8-Phe9- Arg10). Their biological actions are mediated by two distinct receptors, termed B1 and B2. Kinin B and B2 receptor antagonists may be useful drugs endowed with analgesic and anti-inflammatory properties, with potential use in asthma, allergic rhinitis and other diseases. The first nonpeptide kinin B2 receptor antagonist, WIN 64338, was reported in 1993. Despite its low selectivity, the compound provided a reference for pharmacological and modeling studies. Several quinoline and imidazo[1,2-a]pyridine derivatives have been shown by Fujisawa to possess high affinity and selectivity for kinin B2 receptors. Among them, FR 173657 displayed excellent in vitro and in vivo antagonistic activity, while FR 190997 emerged as the first nonpeptide agonist for B2 receptor. Two structurally related Fournier compounds were recently published. Other kinin B2 receptor ligands were obtained by rational design, through library screening or from natural sources. The only example of a nonpeptide kinin B1 receptor ligand has been reported in a patent by Sanofi.  相似文献   

12.
Epidemiological studies have shown that the incidence of some cardiovascular degenerative diseases appears to be lower in populations with regular but moderate drinking of red wine rich in polyphenols. One of the most important properties of polyphenols is to form complexes with proteins. The linear nonapeptide hormone bradykinin (H-Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9-OH) is involved in a variety of physiological processes such as the cardiovascular processes. Thus, the goal of this work was to study the effects of tannins on the peptide structure by NMR investigations and molecular modeling. The results of these investigations show that in the presence of catechin, the peptide conformation is not affected and is in a random coil structure. On the contrary, the peptide structure is modified by the addition of dimeric proanthocyanidin B3 (catechin 4alpha-->8 catechin). The dimer leads to the formation of a large flexible turn between the 6-9 residues. Thus, the biological activities of bradykinin in the presence of polyphenols could be affected.  相似文献   

13.
Mouse Neuro-2a neuroblastoma and rat C6 glioma cloned cells were screened for neuropeptide-metabolizing peptidases using a kininase bioassay combined with a time-course bradykinin-product analysis, and a fluorimetric assay for prolyl endopeptidase. The complementary peptide products Arg1----Phe5/Ser6----Arg9 and Arg1----Pro7/Phe8-Arg9 were released during bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) inactivation by homogenates of Neuro-2a and C6 cells. The 1:1 stoichiometry of the complementary fragments and their high yields, at 10% bradykinin inactivation, demonstrated the sites of hydrolysis. The initial rate of Phe5-Ser6 bond cleavage was six-fold higher than that of the Pro7-Phe8 bond. These sites of cleavage can be attributed to enzymes similar to endopeptidase A (Phe5-Ser6) and prolyl endopeptidase (Pro7-Phe8) on the basis of the specificity and sensitivity to inhibitors of the kininase activity in Neuro-2a and C6 cell homogenates. Kininase and prolyl endopeptidase specific activities (fmol/min/cell) were 10.5 and 12.4 for Neuro-2a, and 1.5 and 2 for C6 homogenate, respectively. The recovery of kininase activity was 2.2-fold higher in the particulate than in the soluble (105,000 g for 1 h) neuronal fraction, whereas the amount of prolyl endopeptidase activity was about the same in both fractions. Kininase and prolyl endopeptidase activities in C6 cells were recovered mostly in the soluble fraction. Prolyl endopeptidase specific activity decreased 10-fold in serum-starved Neuro-2a cultured cells, with no change in activity in similarly treated C6 cells. In contrast, kininase specific activity in both cell types was essentially unaffected on serum-deprivation-induced differentiation.  相似文献   

14.
The spatial structure of the cardioactive octapeptide Pro1-Gln2-Asp3-Pro4-Phe5-Leu6-Arg7-Ile8-NH2 was investigated using the theoretical conformational analysis. The low-energy conformations of the octapeptide molecule were found, the values of dihedral angles of the backbone and side chains of the amino acid residues constituting the peptide were determined, and the energies of intra-and interresidual interactions were estimated. It was shown that the spatial structure of this molecule represent six stable low-energy forms of the main chain.  相似文献   

15.
Two thiol-activated endopeptidases with pH optima near pH 7.5 were isolated from the supernatant fraction of rabbit brain homogenates by DEAE-cellulose chromatography, gel filtration and isoelectrofocusing. Peptide bond hydrolysis was measured quantitatively by ion-exchange chromatography with an amino acid analyzer. Brain kininase A hydrolyzes the Phe5-Ser6 peptide bond in bradykinin (Bk), Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9. It is isoelectric near pH 5.2 and has a molecular weight of approximately 71 000. The enzyme also hydrolyzes the Phe-Ser peptide bond in Lys-Bk, Met-Lys-Bk, des-Arg1-Bk, Lys9-Bk, Pro-Gly-Phe-Ser-Pro-Phe-Arg, and Gly-Pro-Phe-Ser-Pro-Phe-Arg, but does not hydrolyze (0.1%) this bond in des-Phe8-Arg9-Bk. Brain kininase B hydrolyzes the Pro7-Phe8 peptide bond in Bk. It is isoelectric at pH 4.9 and has a molecular weight of approximately 68 000. Brain kininase B also hydrolyzes the Pro-Phe bond in Lys-Bk, Met-Lys-Bk, Lys9-Bk, Ser-Pro-Phe-Arg, and Phe-Ser-Pro-Arg. Pretreatment of denatured kininogen with brain kininase A or B did not reduce the amount of trypsin-releasable Bk from this precursor protein, indicating that the Bk sequence, when part of a large protein, is not a substrate for either enzyme. However, kininase A and B hydrolyze the octadecapeptide Gly-Leu-Met-Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Ser-Val-Gin-Val. The data show that a large part of the C-terminal portion of bradykinin is important for the brain kininase A activity and, for both enzymes, the size of the peptide and presumably the residues adjacent to the scissle bond are important in determining the rate of peptide bond hydrolysis by these endopeptidases.  相似文献   

16.
Linear and cyclic analogues of cyclolinopeptide A (CLA) with two dipeptide segments (Val(5)-Pro(6) and Pro(6)-Pro(7)) replaced by their tetrazole derivatives were synthesized by the SPPS technique and cyclized using TBTU (O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate) reagent. The conformational properties of the c(Leu(1)-Ile(2)-Ile(3)-Leu(4)-Val(5)-Pro(6)-psi[CN(4)]-Ala(7)-Phe(8)-Phe(9)) were investigated by NMR and computational techniques. The overall solution structure of this cyclic peptide resembles that observed for the CLA in the solid state. These studies of cyclic tetrazole CLA analogue confirm that the 1,5-disubstituted tetrazole ring functions as an effective, well-tolerated cis-amide bond mimic in solution. The peptides were examined for their immunosuppressive activity in the humoral response test. For cyclic analogues the immunosuppressive activity, at low doses, is equal in magnitude to the activity presented by cyclosporin A and native CLA. The conformational and biological data seem indicate that the Pro-Pro-Phe-Phe moiety and the preservation of the CLA backbone conformation are important for immunosuppressive activity.  相似文献   

17.
The structural requirements for the binding of dynorphin to the kappa-opioid receptor are of profound clinical interest in the search for a powerful nonaddictive analgesic. These requirements are thought to be met by the membrane-mediated conformation of the opioid peptide dynorphin A-(1-13)-peptide, Tyr1-Gly2-Gly3-Phe4-Leu5-Arg6-Arg7-Ile8-Arg9-Pro10- Lys11-Leu12-Lys13. Schwyzer has proposed an essentially alpha-helical membrane-mediated conformation of the 13 amino acid peptide [Schwyzer, R. (1986) Biochemistry 25, 4281-4286]. In the present study, circular dichroism (CD) studies on dynorphin A-(1-13)-peptide bound to an anionic phospholipid signified negligible helical content of the peptide. CD studies also demonstrated that the aqueous-membraneous interphase may be mimicked by methanol. The 500- and 620-MHz 1H nuclear magnetic resonance (NMR) spectra of dynorphin A-(1-13)-peptide in methanolic solution were sequence-specifically assigned with the aid of correlated spectroscopy (COSY), double-quantum filtered phase-sensitive COSY (DQF-COSY), relayed COSY (RELAY), and nuclear Overhauser enhancement spectroscopy (NOESY). 2-D CAMELSPIN/ROESY experiments indicated that at least the part of the molecule from Arg7 to Arg9 was in an extended or beta-strand conformation, which agreed with deuterium-exchange and temperature-dependence studies of the amide protons and analysis of the vicinal spin-spin coupling constants 3JHN alpha. The results clearly demonstrated the absence of extensive alpha-helix formation. chi 1 rotamer analysis of the 3J alpha beta demonstrated no preferred side-chain conformations.  相似文献   

18.
Alpha-melanotropin (alphaMSH), Ac-Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2,(1) has been long recognized as an important physiological regulator of skin and hair pigmentation in mammals. Binding of this peptide to the melanocortin receptor 1 (MC1R) leads to activation of tyrosinase, the key enzyme of the melanin biosynthesis pathway. In this study, interactions of the human MC1bR (an isoform of the receptor 1a) with the synthetic cyclic analogs of alphaMSH were studied. These ligands were analogs of MTII, Ac-Nle4-cyclo-(Asp5-His6-D-Phe7-Arg8-Trp9-Lys10)-NH2, a potent pan-agonist at the human melanocortin receptors (hMC1,3-5R). In the structure of MTII, the His6-D-Phe7-Arg8-Trp9 segment has been recognized as "essential" for molecular recognition at the human melanocortin receptors (hMC1,3-5R). Herein, the role of the Trp9 in the ligand interactions with the hMC1b,3-5R has been reevaluated. Analogs with various amino acids in place of Trp9 were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4 and 5 (hMC1b,3-5R). Several of the new peptides were high potency agonists (partial) at hMC1bR (EC50 from 0.5 to 20 nM) and largely inactive at hMC3-5R. The bulky aromatic side chain in position 9, such as that in Trp, was found not to be essential to agonism (partial) of the studied peptides at hMC1bR.  相似文献   

19.
20.
Human melanin-concentrating hormone (hMCH) is a nonselective natural ligand for the human melanin-concentrating hormone receptors: hMCH-1R and hMCH-2R. Similarly, the smaller peptide encompassing the disulfide ring and Arg(6) of hMCH, Ac-Arg(6)-cyclo(S-S)(Cys(7)-Met(8)-Leu(9)-Gly(10)-Arg(11)-Val(12)-Tyr(13)-Arg(14)-Pro(15)-Cys(16))-NH(2), Ac-hMCH(6-16)-NH(2), binds to and activates equally well both human MCH receptors present in the brain. To separate the physiological functions of hMCH-1R from those of hMCH-2R, new potent and hMCH-1R selective agonists are necessary. In the present study, analogs of Ac-hMCH(6-16)-NH(2) were prepared and tested in binding and functional assays on cells expressing the MCH receptors. In these peptides, Arg in position 6 was replaced with various d-amino acids and/or Gly in position 10 was substituted with various L-amino acids. Several of the new compounds turned out to be potent agonists at hMCH-1R with improved selectivity over hMCH-2R. For example, peptide 26 with d-Arg in place of L-Arg in position 6 and Asn in place of Gly in position 10, Ac-dArg(6)-cyclo(S-S)(Cys(7)-Met(8)-Leu(9)-Asn(10)-Arg(11)-Val(12)-Tyr(13)-Arg(14)-Pro(15)-Cys(16))-NH(2), was a potent hMCH-1R agonist (IC(50) = 0.5 nm, EC(50) = 47 nm) with more than 200-fold selectivity with respect to hMCH-2R. Apparently, these structural changes in positions 6 and 10 results in peptide conformations that allow for efficient interactions with hMCH-1R but are unfavorable for molecular recognition at hMCH-2R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号