首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mice with the K644E kinase domain mutation in fibroblast growth factor receptor 3 (Fgfr3) (EIIa;Fgfr3(+/K644E)) exhibited a marked enlargement of the brain. The brain size was increased as early as E11.5, not secondary to the possible effect of Fgfr3 activity in the skeleton. Furthermore, the mutant brains showed a dramatic increase in cortical thickness, a phenotype opposite to that in FGF2 knockout mice. Despite this increased thickness, cortical layer formation was largely unaffected and no cortical folding was observed during embryonic days 11.5-18.5 (E11.5-E18.5). Measurement of cortical thickness revealed an increase of 38.1% in the EIIa;Fgfr3(+/K644E) mice at E14.5 and the advanced appearance of the cortical plate was frequently observed at this stage. Unbiased stereological analysis revealed that the volume of the ventricular zone (VZ) was increased by more than two fold in the EIIa;Fgfr3(+/K644E) mutants at E14.5. A relatively mild increase in progenitor cell proliferation and a profound decrease in developmental apoptosis during E11.5-E14.5 most likely accounts for the dramatic increase in total telecephalic cell number. Taken together, our data suggest a novel function of Fgfr3 in controlling the development of the cortex, by regulating proliferation and apoptosis of cortical progenitors.  相似文献   

2.
Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin‐dependent kinase (cdk) family using cdk‐deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 660–670, 2018  相似文献   

3.
Signal-induced proliferation, differentiation, or stress responses of cells depend on mitogen-activated protein kinase (MAPK) cascades, the core modules of which consist of members of three successively acting kinase families (MAPK kinase kinase [MAP3K], MAPK kinase, and MAPK). It is demonstrated here that the MEKK3 kinase inhibits cell proliferation, a biologic response not commonly associated with members of the MAP3K family of kinases. A conditionally activated form of MEKK3 stably expressed in fibroblasts arrests these cells in early G1. MEKK3 critically blocks mitogen-driven expression of cyclin D1, a cyclin which is essential for progression of fibroblasts through G1. The MEKK3-induced block of cyclin D1 expression and of cell cycle progression may be mediated via p38 MAPK, a downstream effector of MEKK3. The MEKK3-mediated block of proliferation also reverses Ras-induced cellular transformation, suggesting possible tumor-suppressing functions for this kinase. Together, these results suggest an involvement of the MEKK3 kinase in negative regulation of cell cycle progression, and they provide the first insights into biologic activities of this kinase.  相似文献   

4.
5.
During maturation, the mouse oocyte is transformed into a highly polarized egg, characterized by an actin cap and cortical granule-free domain (CGFD) overlying the meiotic spindle that is in close proximity to the cortex. The presence of spindle/chromosomes or microinjected sperm chromatin in the cortical region initiates this cortical reorganization, but the pathway is unknown. We report that cortical reorganization induced by microinjected sperm chromatin is blocked by inhibitors of microfilament assembly or disassembly. Active mitogen-activated protein kinase (MAPK), which becomes enriched in the region of sperm chromatin, is required for cortical reorganization, because microinjected sperm chromatin fails to induce cortical reorganization in Mos-/- eggs, which lack MAPK activity. Last, myosin light chain kinase (MLCK), which can be directly phosphorylated and activated by MAPK, appears involved, because the MLCK inhibitors ML-7 and Peptide 18 prevent sperm chromatin-induced cortical reorganization. These results provide new insights into how cortical reorganization occurs independently of extracellular signals to generate egg polarity.  相似文献   

6.
The diversification of neural-crest-derived sympathoadrenal (SA) progenitor cells into sympathetic neurons and neuroendocrine adrenal chromaffin cells was thought to be largely understood. In-vitro studies with isolated SA progenitor cells had suggested that chromaffin cell differentiation depends crucially on glucocorticoids provided by adrenal cortical cells. However, analysis of mice lacking the glucocorticoid receptor gene had revealed that adrenal chromaffin cells develop mostly normally in these mice. Alternative cues from the adrenal cortex that may promote chromaffin cell determination and differentiation have not been identified. We therefore investigated whether the chromaffin cell phenotype can develop in the absence of an adrenal cortex, using mice deficient for the nuclear orphan receptor steroidogenic factor-1 (SF1), which lack adrenal cortical cells and gonads. We show that in Sf1-/- mice typical chromaffin cells assemble correctly in the suprarenal region adjacent to the suprarenal sympathetic ganglion. The cells display most features of chromaffin cells, including the typical large chromaffin granules. Sf1-/- chromaffin cells are numerically reduced by about 50% compared with the wild type at embryonic day (E) 13.5 and E17.5. This phenotype is not accounted for by reduced survival or cell proliferation beyond E12.5. However, already at E12.5 the 'adrenal' region in Sf1-/- mice is occupied by fewer PHOX2B+ and TH+ SA cells as well as SOX10+ neural crest cells. Our results suggest that cortical cues are not essential for determining chromaffin cell fate, but may be required for proper migration of SA progenitors to and/or colonization of the adrenal anlage.  相似文献   

7.
8.
Laminar formation in the developing cerebral cortex requires the precisely regulated generation of phenotype-specified neurons. To test the possible involvement of pituitary adenylate cyclase-activating polypeptide (PACAP) in this formation, we investigated the effects of PACAP administered into the telencephalic ventricular space of 13.5-day-old mouse embryos. PACAP partially inhibited the proliferation of cortical progenitors and altered the position and gene-expression profiles of newly generated neurons otherwise expected for layer IV to those of neurons for the deeper layers, V and VI, of the cerebral cortex. The former and latter effects were seen only when the parent progenitor cells were exposed to PACAP in the later and in earlier G1 phase, respectively; and these effects were suppressed by co-treatment with a protein kinase A (PKA) inhibitor. These observations suggest that PACAP participates in the processes forming the neuronal laminas in the developing cortex via the intracellular PKA pathway.  相似文献   

9.
Muscarinic acetylcholine receptors (mAChR) in the central nervous system are involved in learning and memory, epileptic seizures, and processing the amyloid precursor protein. The M(1) receptor is the predominant mAChR subtype in the cortex and hippocampus. Although the five mAChR fall into two broad functional groups, all five subtypes, when expressed in recombinant systems, can activate the mitogen-activated protein kinase (MAPK) pathway. The MAPK pathway has been implicated in learning and memory, amyloid protein processing, and neuronal plasticity. We used M(1) knock-out mice to determine the role of this receptor subtype in signal transduction in the mouse forebrain. In primary cortical cultures from mice lacking the M(1) mAChR, agonist-stimulated phosphoinositide hydrolysis was reduced by more than 60% compared with cultures from wild type mice. Although muscarinic agonists induced robust activation of MAPK in cortical cultures from wild type mice, mAChR-mediated activation of MAPK was virtually absent in cultures from M(1)-deficient mice. These results indicate that the M(1) mAChR is the major subtype that mediates activation of phospholipase C and MAPK in mouse forebrain.  相似文献   

10.
11.
Insulin-like growth factor-I (IGF-I) is required for the growth of oligodendrocytes, although the underlying mechanisms are not fully understood. Our aim was to investigate the role of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase kinase (MEK1), and Src family tyrosine kinases in IGF-I-stimulated proliferation of oligodendrocyte progenitors. IGF-I treatment increased the proliferation of cultured oligodendrocyte progenitors as determined by measuring incorporation of [(3)H]-thymidine and bromodeoxy-uridine (BrdU). IGF-I stimulated a transient phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK1) and extracellular signal-regulated kinases (ERK1/2) (targets of MEK1), as well as a rapid and sustained activation of Akt (a target of PI3K). Furthermore, inhibitors of PI3K (LY294002 and Wortmannin), MEK1 (PD98059 and U0126), and Src family tyrosine kinases (PP2) decreased IGF-I-induced proliferation, and blocked ERK1/2 activation. LY294002, Wortmannin and PP2 also blocked Akt activation. To further determine whether Akt is required for IGF-I stimulated oligodendrocyte progenitor proliferation, cultures were infected with adenovirus vectors expressing dominant-negative mutants of Akt or treated with pharmacological inhibitors of Akt. All treatments reduced IGF-I-induced oligodendrocyte progenitor proliferation. Our data indicate that stimulation of oligodendrocyte progenitor proliferation by IGF-I requires Src-like tyrosine kinases as well as the PI3K/Akt and MEK1/ERK signaling pathways.  相似文献   

12.
Precise coordination of progenitor cell proliferation and differentiation is essential for proper organ morphogenesis and function during mammalian development. The mitogen-activated protein kinase kinase kinase 1 (MAP3K1) has a well-established role in anterior eyelid development, as Map3k1-knockout mice have defective embryonic eyelid closure and an `eye-open at birth' (EOB) phenotype. Here, we show that MAP3K1 is highly expressed in the posterior of the developing eye and is required for retina development. The MAP3K1-deficient mice exhibit increased proliferation and apoptosis, and Müller glial cell overproduction in the developing retinas. Consequently, the retinas of these mice show localized rosette-like arrangements in the outer nuclear layer, and develop abnormal vascularization, broken down retinal pigment epithelium, photoreceptor loss and early onset of retinal degeneration. Although the retinal defect is associated with increased cyclin D1 and CDK4/6 expression, and RB phosphorylation and E2F-target gene upregulation, it is independent of the EOB phenotype and of JNK. The retinal developmental defect still occurs in knockout mice that have undergone tarsorrhaphy, but is absent in compound mutant Map3k1(+/ΔKD)Jnk1(-/-) and Map3k1(+/ΔKD)Jnk(+/-)Jnk2(+/-) mice that have EOB and reduced JNK signaling. Our results unveil a novel role for MAP3K1 in which it crosstalks with the cell cycle regulatory pathways in the prevention of retina malformation and degeneration.  相似文献   

13.
The granulocyte colony-stimulating factor receptor (G-CSFR) regulates the proliferation, differentiation and survival of neutrophilic progenitor cells. In these studies, we introduced mutant G-CSFRs with cytoplasmic domains truncated approximately every 30 amino acids from the C-terminus into interleukin-3 (IL-3)-dependent myeloid LGM-1 cells. The G-CSFR membrane proximal region containing the Box 2 homology sequence was determined to be critical for proliferative signaling, as well as for activation of Janus kinase (JAK2) and p44/42 mitogen-activated protein kinase (MAPK) following G-CSF stimulation. In the presence of increasing concentrations of JAK2 or p44/42 MAPK inhibitors, LGM-1 cells expressing the full-length G-CSFR exhibited a decreased capacity to proliferate in response to G-CSF. These results demonstrate that JAK2 and p44/42 MAPK activation is involved in proliferative signaling through the G-CSFR membrane proximal region containing the Box 2 homology sequence.  相似文献   

14.
Adrenal medullary chromaffin cells are derivatives of the neural crest and are widely believed to share a common sympathoadrenal (SA) progenitor with sympathetic neurons. For decades, the adrenal cortical environment was assumed to be essential for channelling SA progenitors towards an endocrine chromaffin cell fate. Our recent analysis of steroidogenic factor 1(Sf1) −/− mice, which lack an adrenal cortex, has challenged this view: in Sf1 −/− mice chromaffin cells migrate to the correct “adrenal” location and undergo largely normal differentiation. In contrast to Sf1 homozygous mutants, heterozygous animals have an adrenal cortex, which, however, is smaller than in wildtype littermates. We show here that the Sf1 +/− adrenal cortical anlagen attract normal numbers of chromaffin progenitor cells into their vicinity by embryonic day 13.5 (E13.5). Two days later, however, only a few scattered cells with highly immature features have immigrated into the adrenal cortex, whereas the remainder form a coherent cell assembly ectopically located at the medial surface of the gland. These cells appear more mature than the scattered intracortical chromaffin progenitors and express the adrenaline synthesizing enzyme PNMT with a delay of 1 day in comparison with wildtype littermates. Nevertheless, chromaffin progenitor cells undergo a numerical reduction of approximately 30% by E17.5. Together, our data suggest that normal adrenocortical development is critical for the correct immigration of chromaffin progenitors into the cortical anlagen, for the timing of PNMT expression and for the regulation of chromaffin cell numbers.This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 488, TP A6).  相似文献   

15.
Ex vivo expansion of skin epithelial stem cells has long attracted great interest because of the potential utilization in transplantation and gene therapy. The use of cultured stem or progenitor cells was limited by the lack of applicable culturing system with both satisfactory expansion efficacy and well suppressed differentiation ex vivo. The p38 mitogen-activated protein kinase (MAPK) pathways are responsible for cell growth and differentiation process. We investigated the function of p38 inhibitor SB203580 in the ex vivo expansion of skin epithelial progenitor cells by comparing media with or without addition of this inhibitor. Our results showed that the culturing medium with murine 3T3 feeder layers added with 10 μM SB203580 was more effective in promoting clonal growth of human skin epithelial progenitors or stem cells than the conventional medium without SB203580. The clone initial day in cells treated with 10 μM SB203580 came 2 d earlier with higher colony formation efficiency. The skin epithelial progenitor cells treated with 10 μM SB203580 formed clones that were uniformly smaller in size, longer in sustained proliferation, shorter in clone doubling time, higher in S-phase cells percentage, and lower in levels of differentiation markers such as K10 along with higher levels of stem-cell-associated markers such as p63, K15, and ABCG2 than those cultured in the conventional medium. Collectively, these results indicate that the p38 MAPK pathways inhibitor SB203580 can be used as a culture medium additive that helps to achieve more effective ex vivo expansion of skin epithelial progenitor cells.  相似文献   

16.
Sodium nitroprusside (SNP), a nitric oxide (NO) donor and a nitrovasodilator drug used for patients with hypertensive crisis, has been shown to promote angiogenesis. However, direct evidence showing the involvement of NO in the SNP-induced angiogenesis is not available. Accordingly, we assessed whether NO generated from SNP-stimulated ovine fetoplacental artery endothelial (OFPAE) cell proliferation via activation of mitogen-activated protein kinase 3/1 (MAPK3/1, also termed ERK1/2). We observed that SNP dose dependently stimulated (P < 0.05) cell proliferation with a maximal effect at 1 microM and that SNP rapidly (相似文献   

17.
Naoi K  Hashimoto T 《The Plant cell》2004,16(7):1841-1853
Reversible protein phosphorylation regulates many cellular processes, including the dynamics and organization of the microtubule cytoskeleton, but the events mediating it are poorly understood. A semidominant phs1-1 allele of the Arabidopsis thaliana PROPYZAMIDE-HYPERSENSITIVE 1 locus exhibits phenotypes indicative of compromised cortical microtubule functions, such as left-handed helical growth of seedling roots, defective anisotropic growth at low doses of microtubule-destabilizing drugs, enhancement of the temperature-sensitive microtubule organization1-1 phenotype, and less ordered and more fragmented cortical microtubule arrays compared with the wild type. PHS1 encodes a novel protein similar to mitogen-activated protein kinase (MAPK) phosphatases. In phs1-1, a conserved Arg residue in the noncatalytic N-terminal region is exchanged with Cys, and the mutant PHS1 retained considerable phosphatase activity in vitro. In mammalian MAPK phosphatases, the corresponding region serves as a docking motif for MAPKs, and analogous Arg substitutions severely inhibit the kinase-phosphatase association. Transgenic studies indicate that the phs1-1 mutation acts dominant negatively, whereas the null phs1-2 allele is recessive embryonic lethal. We propose that the PHS1 phosphatase regulates more than one MAPK and that a subset of its target kinases is involved in the organization of cortical microtubules.  相似文献   

18.
Downstream A3 receptor signalling plays an important role in the regulation of cell death and proliferation. Therefore, it is important to determine the molecular pathways involved through A3 receptor stimulation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. The crosstalk between these two pathways has also been investigated. The focus of this review centres on downstream mediators of A3 adenosine receptor signalling.  相似文献   

19.
Neurogenesis during the development of the mammalian cerebral cortex involves a switch of neural stem and progenitor cells from proliferation to differentiation. To explore the possible role of microRNAs (miRNAs) in this process, we conditionally ablated Dicer in the developing mouse neocortex using Emx1-Cre, which is specifically expressed in the dorsal telencephalon as early as embryonic day (E) 9.5. Dicer ablation in neuroepithelial cells, which are the primary neural stem and progenitor cells, and in the neurons derived from them, was evident from E10.5 onwards, as ascertained by the depletion of the normally abundant miRNAs miR-9 and miR-124. Dicer ablation resulted in massive hypotrophy of the postnatal cortex and death of the mice shortly after weaning. Analysis of the cytoarchitecture of the Dicer-ablated cortex revealed a marked reduction in radial thickness starting at E13.5, and defective cortical layering postnatally. Whereas the former was due to neuronal apoptosis starting at E12.5, which was the earliest detectable phenotype, the latter reflected dramatic impairment of neuronal differentiation. Remarkably, the primary target cells of Dicer ablation, the neuroepithelial cells, and the neurogenic progenitors derived from them, were unaffected by miRNA depletion with regard to cell cycle progression, cell division, differentiation and viability during the early stage of neurogenesis, and only underwent apoptosis starting at E14.5. Our results support the emerging concept that progenitors are less dependent on miRNAs than their differentiated progeny, and raise interesting perspectives as to the expansion of somatic stem cells.  相似文献   

20.

Background

The central nervous system (CNS) develops from a heterogeneous pool of neural stem and progenitor cells (NSPC), the underlying differences among which are poorly understood. The study of NSPC would be greatly facilitated by the identification of additional proteins that mediate their function and that would distinguish amongst different progenitor populations.

Methodology/Principal Findings

To identify membrane and membrane-associated proteins expressed by NSPC, we used a proteomics approach to profile NSPC cultured as neurospheres (NS) isolated from the murine cortex during a period of neurogenesis (embryonic day 11.5, E11.5), as compared to NSPC isolated at a peak of gliogenesis (postnatal day 1, P0) and to differentiated E11.5 NS. 54 proteins were identified with high expression in E11.5 NS, including the TrkC receptor, several heterotrimeric G proteins, and the Neogenin receptor. 24 proteins were identified with similar expression in E11.5 and P0 NS over differentiated E11.5 NS, and 13 proteins were identified with high expression specifically in P0 NS compared to E11.5 NS. To illustrate the potential relevance of these identified proteins to neural stem cell biology, the function of Neogenin was further studied. Using Fluorescence Activated Cell Sorting (FACS) analysis, expression of Neogenin was associated with a self-renewing population present in both E11.5 and adult subventricular zone (SVZ) NS but not in P0 NS. E11.5 NS expressed a putative Neogenin ligand, RGMa, and underwent apoptosis when exposed to a ligand-blocking antibody.

Conclusions/Significance

There are fundamental differences between the continuously self-renewing and more limited progenitors of the developing cortex. We identified a subset of differentially expressed proteins that serve not only as a set of functionally important proteins, but as a useful set of markers for the subsequent analysis of NSPC. Neogenin is associated with the continuously self-renewing and neurogenic cells present in E11.5 cortical and adult SVZ NS, and the Neogenin/RGMa receptor/ligand pair may regulate cell survival during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号