首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background  

The classification of protein domains in the CATH resource is primarily based on structural comparisons, sequence similarity and manual analysis. One of the main bottlenecks in the processing of new entries is the evaluation of 'borderline' cases by human curators with reference to the literature, and better tools for helping both expert and non-expert users quickly identify relevant functional information from text are urgently needed. A text based method for protein classification is presented, which complements the existing sequence and structure-based approaches, especially in cases exhibiting low similarity to existing members and requiring manual intervention. The method is based on the assumption that textual similarity between sets of documents relating to proteins reflects biological function similarities and can be exploited to make classification decisions.  相似文献   

3.

Background

In recent years high throughput methods have led to a massive expansion in the free text literature on molecular biology. Automated text mining has developed as an application technology for formalizing this wealth of published results into structured database entries. However, database curation as a task is still largely done by hand, and although there have been many studies on automated approaches, problems remain in how to classify documents into top-level categories based on the type of organism being investigated. Here we present a comparative analysis of state of the art supervised models that are used to classify both abstracts and full text articles for three model organisms.

Results

Ablation experiments were conducted on a large gold standard corpus of 10,000 abstracts and full papers containing data on three model organisms (fly, mouse and yeast). Among the eight learner models tested, the best model achieved an F-score of 97.1% for fly, 88.6% for mouse and 85.5% for yeast using a variety of features that included gene name, organism frequency, MeSH headings and term-species associations. We noted that term-species associations were particularly effective in improving classification performance. The benefit of using full text articles over abstracts was consistently observed across all three organisms.

Conclusions

By comparing various learner algorithms and features we presented an optimized system that automatically detects the major focus organism in full text articles for fly, mouse and yeast. We believe the method will be extensible to other organism types.
  相似文献   

4.

Background

Thyroid cancer is the most common endocrine tumor with a steady increase in incidence. It is classified into multiple histopathological subtypes with potentially distinct molecular mechanisms. Identifying the most relevant genes and biological pathways reported in the thyroid cancer literature is vital for understanding of the disease and developing targeted therapeutics.

Results

We developed a large-scale text mining system to generate a molecular profiling of thyroid cancer subtypes. The system first uses a subtype classification method for the thyroid cancer literature, which employs a scoring scheme to assign different subtypes to articles. We evaluated the classification method on a gold standard derived from the PubMed Supplementary Concept annotations, achieving a micro-average F1-score of 85.9% for primary subtypes. We then used the subtype classification results to extract genes and pathways associated with different thyroid cancer subtypes and successfully unveiled important genes and pathways, including some instances that are missing from current manually annotated databases or most recent review articles.

Conclusions

Identification of key genes and pathways plays a central role in understanding the molecular biology of thyroid cancer. An integration of subtype context can allow prioritized screening for diagnostic biomarkers and novel molecular targeted therapeutics. Source code used for this study is made freely available online at https://github.com/chengkun-wu/GenesThyCan.
  相似文献   

5.
6.
Tens of thousands of biomedical journals exist, and the deluge of new articles in the biomedical sciences is leading to information overload. Hence, there is much interest in text mining, the use of computational tools to enhance the human ability to parse and understand complex text.  相似文献   

7.
Protein Glycosylation is an important post translational event that plays a pivotal role in protein folding and protein is trafficking. We describe a dictionary based and a rule based approach to mine ‘mentions‘ of protein glycosylation in text. The dictionary based approach relies on a set of manually curated dictionaries specially constructed to address this task. Abstracts are then screened for the ‘mentions‘ of words from these dictionaries which are further scored followed by classification on the basis of a threshold. The rule based approaches also relies on the words in the dictionary to arrive at the features which are used for classification. The performance of the system using both the approaches has been evaluated using a manually curated corpus of 3133 abstracts. The evaluation suggests that the performance of the Rule based approach supersedes that of the Dictionary based approach.  相似文献   

8.
9.

Background  

Text mining has become a useful tool for biologists trying to understand the genetics of diseases. In particular, it can help identify the most interesting candidate genes for a disease for further experimental analysis. Many text mining approaches have been introduced, but the effect of disease-gene identification varies in different text mining models. Thus, the idea of incorporating more text mining models may be beneficial to obtain more refined and accurate knowledge. However, how to effectively combine these models still remains a challenging question in machine learning. In particular, it is a non-trivial issue to guarantee that the integrated model performs better than the best individual model.  相似文献   

10.
Frontiers of biomedical text mining: current progress   总被引:3,自引:0,他引:3  
It is now almost 15 years since the publication of the first paper on text mining in the genomics domain, and decades since the first paper on text mining in the medical domain. Enormous progress has been made in the areas of information retrieval, evaluation methodologies and resource construction. Some problems, such as abbreviation-handling, can essentially be considered solved problems, and others, such as identification of gene mentions in text, seem likely to be solved soon. However, a number of problems at the frontiers of biomedical text mining continue to present interesting challenges and opportunities for great improvements and interesting research. In this article we review the current state of the art in biomedical text mining or 'BioNLP' in general, focusing primarily on papers published within the past year.  相似文献   

11.

Background  

Fluorescent and luminescent gene reporters allow us to dynamically quantify changes in molecular species concentration over time on the single cell level. The mathematical modeling of their interaction through multivariate dynamical models requires the deveopment of effective statistical methods to calibrate such models against available data. Given the prevalence of stochasticity and noise in biochemical systems inference for stochastic models is of special interest. In this paper we present a simple and computationally efficient algorithm for the estimation of biochemical kinetic parameters from gene reporter data.  相似文献   

12.
A survey of current work in biomedical text mining   总被引:3,自引:0,他引:3  
The volume of published biomedical research, and therefore the underlying biomedical knowledge base, is expanding at an increasing rate. Among the tools that can aid researchers in coping with this information overload are text mining and knowledge extraction. Significant progress has been made in applying text mining to named entity recognition, text classification, terminology extraction, relationship extraction and hypothesis generation. Several research groups are constructing integrated flexible text-mining systems intended for multiple uses. The major challenge of biomedical text mining over the next 5-10 years is to make these systems useful to biomedical researchers. This will require enhanced access to full text, better understanding of the feature space of biomedical literature, better methods for measuring the usefulness of systems to users, and continued cooperation with the biomedical research community to ensure that their needs are addressed.  相似文献   

13.
14.
In this work, a procedure for estimating kinetic parameters in biochemically structured models was developed. The approach is applicable when the structure of a kinetic model has been set up and the kinetic parameters should be estimated. The procedure consists of five steps. First, initial values were found in or calculated from literature. Hereafter using sensitivity analysis the most sensitive parameters were identified. In the third step physiological knowledge was combined with the parameter sensitivities to manually tune the most sensitive parameters. In step four, a global optimisation routine was applied for simultaneous estimation of the most sensitive parameters identified during the sensitivity analysis. Regularisation was included in the simultaneous estimation to reduce the effect of insensitive parameters. Finally, confidence intervals for the estimated parameters were calculated. This parameter estimation approach was demonstrated on a biochemically structured yeast model containing 11 reactions and 37 kinetic constants as a case study.  相似文献   

15.
An isoconversional method is proposed in order to calculate the kinetic parameters of enzyme inactivation. The method provides an efficient and low-cost procedure to describe both operational and thermal inactivation. Unlike the ordinary kinetic assays performed at constant enzyme concentration and at various substrate concentrations, the isoconversional method requires several extended kinetic curves for constant initial substrate concentration and different enzyme concentrations. The procedure was tested and validated using simulated data obtained for several kinetic models frequently discussed in the literature. After the validation, the isoconversional method was used for the investigation of the thermoinactivation of urease during urea hydrolysis in self buffered medium and the operational inactivation (destructive oxidation by excess peroxide) of catalase at high concentration of hydrogen peroxide. The results showed that the isoconversional method gives good results of global inactivation constant for both simple and more complex models.  相似文献   

16.
The aspartate‐derived amino‐acid pathway from plants is well suited for analysing the function of the allosteric network of interactions in branched pathways. For this purpose, a detailed kinetic model of the system in the plant model Arabidopsis was constructed on the basis of in vitro kinetic measurements. The data, assembled into a mathematical model, reproduce in vivo measurements and also provide non‐intuitive predictions. A crucial result is the identification of allosteric interactions whose function is not to couple demand and supply but to maintain a high independence between fluxes in competing pathways. In addition, the model shows that enzyme isoforms are not functionally redundant, because they contribute unequally to the flux and its regulation. Another result is the identification of the threonine concentration as the most sensitive variable in the system, suggesting a regulatory role for threonine at a higher level of integration.  相似文献   

17.
18.

Background

Due to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events.

Results

This article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard.

Conclusions

The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring.  相似文献   

19.
20.

Background  

DNA methylation is an important epigenetic modification of the genome. Abnormal DNA methylation may result in silencing of tumor suppressor genes and is common in a variety of human cancer cells. As more epigenetics research is published electronically, it is desirable to extract relevant information from biological literature. To facilitate epigenetics research, we have developed a database called MeInfoText to provide gene methylation information from text mining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号