首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that inhibition of Rho-kinase (ROCK) by hydroxyl fasudil improves cognitive deficit and neuronal damage in rats with chronic cerebral ischemia (Huang et al., Cell Mol Neurobiol 28:757–768, 2008). In this study, fasudil mesylate (FM) was investigated for its neuroprotective potential in rats with ischemia following middle cerebral artery occlusion (MCAO) and reperfusion. The effect of fasudil mesylate was also studied in rat brain cortical and hippocampal slices treated with oxygen-glucose deprivation (OGD) injury. Gross anatomy showed that cerebral infarct size, measured with 2,3,5-triphenyltetrazolium chloride (TTC) staining, was significantly smaller in the FM-treated than in the non-FM-treated ischemic rats. In the brain regions vulnerable to ischemia of ischemic rats, fasudil mesylate was also found to significantly restore the enzyme protein expression level of endothelial nitric oxide synthase (eNOS), which was decreased in ischemia. However, it remarkably reduced the protein synthesis of inducible nitric oxide synthase (iNOS) that was induced by ischemia and reperfusion. In rat brain slices treated with OGD injury, fasudil mesylate increased the neuronal cell viability by 40% for cortex and by 61% for hippocampus, respectively. Finally, in the presence of OGD and fasudil mesylate, superoxide dismutase (SOD) activity was increased by 50% for cortex and by 58% for hippocampus, compared to OGD only group. In conclusion, our in vivo study showed that fasudil mesylate not only decreased neurological deficit but also reduced cerebral infarct size, possibly and at least partially by augmenting eNOS protein expression and inhibiting iNOS protein expression after ischemia-reperfusion. Xian-Ju Huang contributed equally to this article.  相似文献   

2.
Abstract : The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor ( Z )-1-[(2-aminoethyl)- N -(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

3.
Brain ischemic tolerance is a protective mechanism induced by a preconditioning stimulus, which prepare the tissue against harmful insults. Preconditioning with N-methyl-d-aspartate (NMDA) agonists induces brain tolerance and protects it against glutamate excitotoxicity. Recently, the glycine transporters type 1 (GlyT-1) have been shown to potentiate glutamate neurotransmission through NMDA receptors suggesting an alternative strategy to protect against glutamate excitotoxicity. Here, we evaluated the preconditioning effect of sarcosine pre-treatment, a GlyT-1 inhibitor, in rat hippocampal slices exposed to ischemic insult. Sarcosine (300mg/kg per day, i.p.) was administered during seven consecutive days before induction of ischemia in hippocampus by oxygen/glucose deprivation (OGD). To access the damage caused by an ischemic insult, we evaluated cells viability, glutamate release, nitric oxide (NO) production, lactate dehydrogenase (LDH) levels, production of reactive oxygen species (ROS), and antioxidant enzymes as well as the impact of oxidative stress in the tissue. We observed that sarcosine reduced cell death in hippocampus submitted to OGD, which was confirmed by reduction on LDH levels in the supernatant. Cell death, glutamate release, LDH levels and NO production were reduced in sarcosine hippocampal slices submitted to OGD when compared to OGD controls (without sarcosine). ROS production was reduced in sarcosine hippocampal slices exposed to OGD, although no changes were found in antioxidant enzymes activities. This study demonstrates that preconditioning with sarcosine induces ischemic tolerance in rat hippocampal slices submitted to OGD.  相似文献   

4.
The glycosaminoglycan chondroitin sulfate (CS) is a major constituent of the extracellular matrix of the central nervous system where it can constitute part of the perineuronal nets. Constituents of the perineuronal nets are gaining interest because they have modulatory actions on their neighbouring neurons. In this study we have investigated if CS could afford protection in an acute in vitro ischemia/reoxygenation model by using isolated hippocampal slices subjected to 60min oxygen and glucose deprivation (OGD) followed by 120min reoxygenation (OGD/Reox). In this toxicity model, CS afforded protection of rat hippocampal slices measured as a reduction of lactate dehydrogenase (LDH) release; maximum protection (70% reduction of LDH) was obtained at the concentration of 3mM. To evaluate the intracellular signaling pathways implicated in the protective effect of CS, we first analysed the participation of the mitogen-activated protein kinases (MAPKs) p38 and ERK1/2 by western blot. OGD/Reox induced the phosphorylation of p38 and dephosphorylation of ERK1/2; however, CS only inhibited p38 but had no effect on ERK1/2. Furthermore, OGD/Reox-induced translocation of p65 to the nucleus was prevented in CS treated hippocampal slices. Finally, CS inhibited iNOS induction caused by OGD/Reox and thereby nitric oxide (NO) production measured as a reduction in DAF-2 DA fluorescence. In conclusion, the protective effect of CS in hippocampal slices subjected to OGD/Reox can be related to a modulatory action of the local immune response by a mechanism that implies inhibition of p38, NFκB, iNOS and the production of NO.  相似文献   

5.
目的: 研究一氧化氮(NO)和内皮素-1(ET-1)在大鼠肢体缺血/再灌注(LI/R)后脑损伤中的作用,探讨NO/ET-1平衡关系的变化对脑损伤的影响.方法: 在大鼠LI/R损伤模型上,应用NO合成前体物质L-精氨酸(L-Arg)、一氧化氮合酶(NOS)抑制剂氨基胍(AG)、ETA受体阻断剂BQl23进行干预,观察血浆 NO、ET-1、MDA、XOD、SOD、LDH及脑组织tNOS、iNOS、cNOS、NO、ET-1、MDA、XOD、MPO、 SOD的变化.结果: 与对照组比较,I/R组血浆MDA、XOD、LDH及脑组织MDA、XOD、MPO升高,SOD活性降低(P<0.01),脑组织tNOS和iNOS明显升高,而cNOS明显降低(P<0.01),I/R组血浆及脑组织NO、ET-1增加,NO/ET-1比值降低,脑损伤加重.应用L-Arg及BQ123后,血浆及脑组织NO/ET-1比值较I/R组升高,脑损伤减轻,应用AG后,NO/ET-1比值降低,脑损伤进一步加重.结论: 肢体缺血/再灌注后,一氧化氮与内皮素-l的比值降低时脑损伤加重.  相似文献   

6.
We attempted to ascertain the neuroprotective effects and mechanisms of minocycline in inflammatory-mediated neurotoxicity using primary neuron/glia co-cultures treated with lipopolysaccharide (LPS). Neuronal cell death was induced by treatment with LPS for 48 h, and the cell damage was assessed using lactate dehydrogenase (LDH) assays and by counting microtubule-associated protein-2 (MAP-2) positive cells. Through terminal transferase deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-staining and by measuring caspase-3 activity, we found that LPS-induced neuronal cell death was mediated by apoptosis. We determined that pre-treatment with minocycline significantly inhibited LPS-induced neuronal cell death. In addition, LPS induced inducible nitric oxide synthase (iNOS) expression significantly, resulting in nitric oxide (NO) production within glial cells, but not in neurons. Both nitric oxide synthase (NOS) inhibitors (N(G)-monomethyl-L-arginine monoacetate (L-NMMA) and S-methylisothiourea sulfate (SMT)) and minocycline inhibited iNOS expression and NO release, and increased neuronal survival in neuron/glia co-cultures. Pre-treatment with minocycline significantly inhibited the rapid and extensive production of tumor necrosis factor-alpha (TNF-alpha) mediated by LPS in glial cells. We also determined that the signaling cascade of LPS-mediated iNOS induction and NO production was mediated by TNF-alpha by using neutralizing antibodies to TNF-alpha. Consequently, our results show that the neuroprotective effect of minocycline is associated with inhibition of iNOS induction and NO production in glial cells, which is mediated by the LPS-induced production of TNF-alpha.  相似文献   

7.
Long-term exposure to stress has detrimental effects on several brain functions in many species, including humans, and leads to neurodegenerative changes. However, the underlying neural mechanisms by which stress causes neurodegeneration are still unknown. We have investigated the role of endogenously released nitric oxide (NO) in this phenomenon and the possible induction of the inducible NO synthase (iNOS) isoform. In adult male rats, stress (immobilization for 6 h during 21 days) increases the activity of a calcium-independent NO synthase and induces the expression of iNOS in cortical neurons as seen by immunohistochemical and western blot analysis. Three weeks of repeated immobilization increases immunoreactivity for nitrotyrosine, a nitration product of peroxynitrite. Repeated stress causes accumulation of the NO metabolites NO2+ NO3- (NOx-) accumulation in cortex, and these changes occur in parallel with lactate dehydrogenase (LDH) release and impairment of glutamate uptake in synaptosomes. Administration of the selective iNOS inhibitor aminoguanidine (400 mg/kg i.p. daily from days 7 to 21 of stress) prevents NOx- accumulation in cortex, LDH release, and impairment of glutamate uptake in synaptosomes. Taken together, these findings indicate that a sustained overproduction of NO via iNOS expression may be responsible, at least in part, for some of the neurodegenerative changes caused by stress and support a possible neuroprotective role for specific iNOS inhibitors in this situation.  相似文献   

8.
Wang ZF  Tang XC 《FEBS letters》2007,581(4):596-602
The protective effects of huperzine A against oxygen-glucose deprivation (OGD)-induced injury in C6 cells were investigated. OGD for 6h and reoxygenation for 6h enhanced phosphorylation and degradation of IkappaBalpha and nuclear translocation of nuclear factor-kappa B (NF-kappaB), triggered overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nitric oxide (NO) in C6 cells. Along with inhibiting acetylcholinesterase activity, treatment with 1 microM huperzine A inhibited activation of NF-kappaB, attenuated iNOS, COX-2 and NO overexpression, and promoted survival in C6 cells subjected to OGD insult. The protective effects of huperzine A were partly mediated by "cholinergic anti-inflammatory pathway" through alpha7 nicotinic acetylcholine receptor.  相似文献   

9.
Stearic acid is a long-chain saturated fatty acid consisting of 18 carbon atoms without double bonds. In the present study, we reported the neuroprotective effects and mechanism of stearic acid on cortical or hippocampal slices insulted by oxygen-glucose deprivation, NMDA or hydrogen peroxide (H(2)O(2)) in vitro. Different types of models of brain slice injury in vitro were developed by 10 min of oxygen/glucose deprivation, 0.5 mM NMDA or 2 mM H(2)O(2), respectively. After 30 min of preincubation with stearic acid (3-30 microM), cortical or hippocampal slices were subjected to oxygen-glucose deprivation, NMDA or H(2)O(2). Then the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride (TTC) method. Population spikes were recorded in randomly selected hippocampal slices. Stearic acid (3-30 microM) dose-dependently protected brain slices from oxygen-glucose deprivation, NMDA and H(2)O(2) insults. Its neuroprotective effect against H(2)O(2) insults can be completely blocked by wortmannin (inhibitor of PI3K) and partially blocked by H7 (inhibitor of PKC) or genistein (inhibitor of TPK). Treatment of cortical or hippocampal slices with 30 microM stearic acid resulted in a significant increase in PI3K activity at 5, 10, 30 and 60 min. These observations reveal that stearic acid can protect cortical or hippocampal slices against injury induced by oxygen-glucose deprivation, NMDA or H(2)O(2), and its neuroprotective effects are via phosphatidylinositol 3-kinase dependent mechanism.  相似文献   

10.
Guanosine, the endogenous guanine nucleoside, prevents cellular death induced by ischemic events and is a promising neuroprotective agent. During an ischemic event, nitric oxide has been reported to either cause or prevent cell death. Our aim was to evaluate the neuroprotective effects of guanosine against oxidative damage in hippocampal slices subjected to an in vitro ischemia model, the oxygen/glucose deprivation (OGD) protocol. We also assessed the participation of nitric oxide synthase (NOS) enzymes activity on the neuroprotection promoted by guanosine. Here, we showed that guanosine prevented the increase in ROS, nitric oxide, and peroxynitrite production induced by OGD. Moreover, guanosine prevented the loss of mitochondrial membrane potential in hippocampal slices subjected to OGD. Guanosine did not present an antioxidant effect per se. The protective effects of guanosine were mimicked by inhibition of neuronal NOS, but not of inducible NOS. The neuroprotective effect of guanosine may involve activation of cellular mechanisms that prevent the increase in nitric oxide production, possibly via neuronal NOS.  相似文献   

11.
Alcoholic infusions of Ptychopetalum olacoides Bentham (PO, Olacaceae) are used in traditional medicine by patients presenting age associated symptoms and those recovering from stroke. The aim of this study is to evaluate the neuroprotective properties of PO ethanol extract (POEE) using hippocampal slices from Wistar rats exposed to oxygen and glucose deprivation (OGD, followed by reoxygenation). Mitochondrial activity, an index of cell viability, was assessed by the MTT assay; in addition, the free radicals content was estimated by the use of dichlorofluorescein diacetate as probe. The OGD ischemic condition significantly impaired cellular viability, and increased free radicals generation. In non-OGD slices, incubation with POEE (0.6 microg/ml) increased (approximately 40%) mitochondrial activity, without affecting free radicals levels. In comparison to OGD controls, slices incubated with POEE (0.6 microg/ml) during and after OGD exposure had significantly increased cellular viability. In addition, at this same concentration, POEE prevented the increase of free radicals content induced by OGD. In view of the fact that respiratory chain inhibition and increased generation of free radicals are major consequences of the ischemic injury, this study suggests that Ptychopetalum olacoides contains useful neuroprotective compounds and, therefore, deserves further scrutiny.  相似文献   

12.
The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO2)]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O*2-), hydroxyl radicals (*OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO-) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of gamma-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage.  相似文献   

13.
Although it is well known that regular exercise may promote neuroprotection, the mechanisms underlying this effect are still not fully understood. We investigated if swim training promotes neuroprotection by potentiating antioxidant pathways, thereby decreasing the effects of oxidative stress on glutamate and nitric oxide release. Male Wistar rats (n=36) were evenly randomized into a trained group (TRA) (5 days/week, 8 weeks, 30 min) and a sedentary group (SED). Forty‐eight hours after the last session of exercise, animals were killed and brain was collected for in vitro ischemia. Cortical slices were divided into two groups: a group in which oxidative stress was induced by oxygen and glucose deprivation (OGD), and a group of non‐deprived controls (nOGD). Interestingly, exercise by itself increased superoxide dismutase activity (nOGD, SED vs. TRA animals) with no effect on pro‐oxidative markers. In fact, TRA‐OGD slices showed lowered levels of lactate dehydrogenase when compared with SED‐OGD controls, reinforcing the idea that exercise affords a neuroprotective effect. We also demonstrated that exercise decreased glutamate and nitrite release as well as lipid membrane damage in the OGD cortical slices. Our data suggest that under conditions of metabolic stress, swim training prevents oxidative damage caused by glutamate and nitric oxide release.  相似文献   

14.
Notoginsenoside R1 (NGR1) is a predominant phytoestrogen extracted from Panax notoginseng that has recently been reported to play important roles in the treatment of cardiac dysfunction, diabetic kidney disease, and acute liver failure. Studies have suggested that NGR1 may be a viable treatment of hypoxic-ischemic brain damage (HIBD) in neonates by reducing endoplasmic reticulum stress via estrogen receptors (ERs). However, whether NGR1 has other neuroprotective mechanisms or long-term neuroprotective effects is unclear. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons and unilateral ligation of the common carotid artery (CCL) in 7-day-old postnatal Sprague Dawley (SD) rats followed by exposure to a hypoxic environment were used to mimic an HIBD episode. We assessed the efficacy of NGR1 by measuring neuronal damage with MTT assay and assessed brain injury by TTC staining and brain water content detection 24–48 h after OGD/HIE. Simultaneously, we measured the long-term neurophysiological effects using the beam walking test (5 weeks after HI) and Morris water maze test 5–6 weeks after HI. Expression of PI3K-Akt-mTOR/JNK (24 h after HI or OGD/R) proteins was detected by Western blotting after stimulation with HI, NGR1, LY294002 (PI3K inhibitor), 740Y-P (PI3K agonist), or ICI 182780(estrogen receptors inhibitor). The results indicated that NGR1 exerted neuroprotective effects by inhibiting neuronal apoptosis and promoting cell survival via the PI3K-Akt-mTOR/JNK signaling pathways by targeting ER in neonatal hypoxic–ischemic injury.  相似文献   

15.
Although oxygen/glucose deprivation (OGD) has been widely used as a model of ischemic brain damage, the mechanisms underlying acute neuronal death in this model are not yet well understood. We used OGD in acute hippocampal slices to investigate the roles of reactive oxygen species and of the mitogen-activated protein kinases (MAPKs) in neuronal death. In particular, we tested the neuroprotective effects of two synthetic superoxide dismutase/catalase mimetics, EUK-189 and EUK-207. Acute hippocampal slices prepared from 2-month-old or postnatal day 10 rats were exposed to oxygen and glucose deprivation for 2 h followed by 2.5 h reoxygenation. Lactate dehydrogenase (LDH) release in the medium and propidium iodide (PI) uptake were used to evaluate cell viability. EUK-189 or EUK-207 applied during the OGD and reoxygenation periods decreased LDH release and PI uptake in slices from 2-month-old rats. EUK-189 or EUK-207 also partly blocked OGD-induced ATP depletion and extracellular signal-regulated kinases 1 and 2 (ERK1/2) dephosphorylation, and completely eliminated reactive oxygen species generation. The MEK inhibitor U0126 applied together with EUK-189 or EUK-207 completely blocked ERK1/2 activation, but had no effect on their protective effects against OGD-induced LDH release. U0126 alone had no effect on OGD-induced LDH release. EUK-207 had no effect on OGD-induced p38 or c-Jun N-terminal kinase dephosphorylation, and when the p38 inhibitor SB203580 was applied together with EUK-207, it had no effect on the protective effects of EUK-207. SB203580 alone had no effect on OGD-induced LDH release either. In slices from p10 rats, OGD also induced high-LDH release that was partly reversed by EUK-207; however, neither OGD nor EUK-207 produced significant changes in ERK1/2 and p38 phosphorylation. OGD-induced spectrin degradation was not modified by EUK-189 or EUK-207 in slices from p10 or 2-month-old rats, suggesting that their protective effects was not mediated through inhibition of calpain activation. Thus, both EUK-189 and EUK-207 provide neuroprotection in acute ischemic conditions, and this effect is related to elimination of free radical formation and partial reversal of ATP depletion, but not mediated by the activation or inhibition of the MEK/ERK or p38 pathways, or inhibition of calpain activation.  相似文献   

16.
Xia CF  Huo Y  Xue L  Zhu GY  Tang CS 《生理学报》2001,53(6):431-434
为探讨抗炎因子--白细胞介素-10(IL-10)对大鼠主动脉一氧化氮(NO)/一氧化氮合酶(NOS)系统的影响,应用Griess试剂、^3H-瓜氨酸生成及蛋白免疫印迹杂交等方法,测定IL-10孵育对血管NO释放、NOS活性及表达的影响。结果发现细菌脂多糖(LPS)呈浓度领带性地激活诱导型NOS(iNOS),促进NO生成。IL-10(10^-10-10^-8g/ml)呈浓度依赖性地上调内皮型NOS(eNOS)蛋白表达及其活性,但对iNOS活性及表达无明显影响,IL-10(10^-9-10^-8g/ml)显著抑制10μg/ml LPS诱导的NO生成和iNOS激活;而高浓度IL-10(10^-7g/ml)则上调iNOS的活性,对eNOS蛋白的表达知活性无明显影响。因此IL-10对NO/NOS系统具有双重影响,一方面可抑制炎症介质诱发的作为炎性物质的iNOS的表达及激活,另一方面可上调内皮源扩血管物质NO的释放。  相似文献   

17.
18.
The aim of the present study was to investigate the protective effect of total flavones of rhododendra (TFR) pharmacological preconditioning against myocardial ischemia-reperfusion (I/R) injury and its probable mechanisms in rats. Rat myocardial I/R injury was induced by ligating and untying the left anterior descending coronary artery. Male Sprague-Dawley rats were anesthetized and the chests were opened. All animals were subjected to 30 min of occlusion and 1 h of reperfusion. Twenty-four hours before the 30-minute occlusion, rats received 3 cycles of 5 min intravenous perfusion of TFR (10, 20, 40 mg/kg) or morphine hydrochloride (0.3 mg/kg) or normal saline interspersed with drug-free periods. Changes in the ST segment of ECG, the content of cardiac troponin I (cTnI), malondialdehyde (MDA), and nitric oxide (NO), and the activity of superoxide dismutase (SOD), lactate dehydrogenase (LDH), creatine phosphokinase (CK), and nitric oxide synthase (NOS) in serum were measured. Infarct size (IS), as a percentage of the area at risk (AAR), was determined by TTC staining. The expression of inducible nitric oxide synthase (iNOS) mRNA in rat myocardium was detected by RT-PCR and the expression of iNOS protein was detected by Western blot. Pretreatment with TFR (10, 20, 40 mg/kg) markedly inhibited I/R-induced ST segment elevation of ECG. TFR (20, 40 mg/kg) pretreatment decreased I/R-induced IS/AAR, markedly inhibited the increase of MDA content and the activity of CK and LDH, and also significantly inhibited the decline of NO content and the activity of NOS and SOD in serum. TFR (40 mg/kg) preconditioning significantly inhibited the increase of serum cTnI induced by I/R injury and increased the expression of iNOS both at mRNA and protein levels in rat myocardium. Our findings indicate that TFR preconditioning has a protective effect against myocardial I/R injury in rats. The cardioprotection involves the stimulation of NO release and the inhibition of lipid peroxidation.  相似文献   

19.
Neuroserpin (NSP) reportedly exerts neuroprotective effects in cerebral ischemic animal models and patients; however, the mechanism of protection is poorly understood. We thus attempted to confirm neuroprotective effects of NSP on astrocytes in the ischemic state and then explored the relative mechanisms. Astrocytes from neonatal rats were treated with oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/R). To confirm the neuroprotective effects of NSP, we measured the cell survival rate, relative lactate dehydrogenase (LDH) release; we also performed morphological methods, namely Hoechst 33342 staining and Annexin V assay. To explore the potential mechanisms of NSP, the release of nitric oxide (NO) and TNF-α related to NSP administration were measured by enzyme-linked immunosorbent assay. The proteins related to the NF-κB, ERK1/2, and PI3K/Akt pathways were investigated by Western blotting. To verify the cause-and-effect relationship between neuroprotection and the NF-κB pathway, a NF-κB pathway inhibitor sc3060 was employed to observe the effects of NSP-induced neuroprotection. We found that NSP significantly increased the cell survival rate and reduced LDH release in OGD/R-treated astrocytes. It also reduced NO/TNF-α release. Western blotting showed that the protein levels of p-IKKBα/β and P65 were upregulated by the OGD/R treatment and such effects were significantly inhibited by NSP administration. The NSP-induced inhibition could be significantly reversed by administration of the NF-κB pathway inhibitor sc3060, whereas, expressions of p-ERK1, p-ERK2, and p-AKT were upregulated by the OGD/R treatment; however, their levels were unchanged by NSP administration. Our results thus verified the neuroprotective effects of NSP in ischemic astrocytes. The potential mechanisms include inhibition of the release of NO/TNF-α and repression of the NF-κB signaling pathways. Our data also indicated that NSP has little influence on the MAPK and PI3K/Akt pathways.  相似文献   

20.
The present study investigated the roles of nitric oxide (NO) in preconditioning (PC)-induced neuronal ischemic tolerance in cortical cultures. Ischemia in vitro was simulated by subjecting cultures to both oxygen and glucose deprivation (OGD). A sublethal OGD (PC) significantly increased the survival rate of neurons when cultures were exposed to a lethal OGD 24 h later. Both the inhibition of nitric oxide synthase (NOS) and scavenging of NO during PC significantly attenuated the PC-induced neuronal tolerance. In addition, exposure to an NO donor emulated the PC. In contrast, the inhibition of NOS and the scavenging of NO during lethal OGD tended to increase the survival rate of neurons. This study suggested that NO produced during ischemia was fundamentally toxic, but critical to the development of PC-induced neuronal tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号