首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modern optical microscopy has granted biomedical scientists unprecedented access to the inner workings of a cell, and revolutionized our understanding of the molecular mechanisms underlying physiological and disease states. In spite of these advances, however, visualization of certain classes of molecules (e.g. lipids) at the sub-cellular level has remained elusive. Recently developed chemical imaging modalities – Coherent Anti-Stokes Raman Scattering (CARS) microscopy and Stimulated Raman Scattering (SRS) microscopy – have helped bridge this gap. By selectively imaging the vibration of a specific chemical group, these non-invasive techniques allow high-resolution imaging of individual molecules in vivo, and circumvent the need for potentially perturbative extrinsic labels. These tools have already been applied to the study of fat metabolism, helping uncover novel regulators of lipid storage. Here we review the underlying principle of CARS and SRS microscopy, and discuss the advantages and caveats of each technique. We also review recent applications of these tools in the study of lipids as well as other biomolecules, and conclude with a brief guide for interested researchers to build and use CARS/SRS systems for their own research. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   

2.
The authors demonstrate Raman‐resonant imaging based on the simultaneous generation of several nonlinear frequency mixing processes resulting from a 3‐color coherent anti‐Stokes Raman scattering (CARS) experiment. The interaction of three coincident short‐pulsed laser beams simultaneously generates both 2‐color (degenerate) CARS and 3‐color (non‐degenerate) CARS signals, which are collected and characterized spectroscopically – allowing for resonant, doubly‐resonant, and non‐resonant contrast mechanisms. Images obtained from both 2‐color and 3‐color CARS signals are compared and found to provide complementary information. The 3‐color CARS microscopy scheme provides a versatile multiplexed modality for biological imaging, which may extend the capabilities of label‐free non‐linear microscopy, e.g. by probing multiple Raman resonances. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In the case of most optical imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached fluorophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two-photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.  相似文献   

4.
Li L  Wang H  Cheng JX 《Biophysical journal》2005,89(5):3480-3490
We demonstrate quantitative vibrational imaging of specific lipid molecules in single bilayers using laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with a lateral resolution of 0.25 mum. A lipid is spectrally separated from other molecules by using deuterated acyl chains that provide a large CARS signal from the symmetric CD(2) stretch vibration around 2100 cm(-1). Our temperature control experiments show that d62-DPPC has similar bilayer phase segregation property as DPPC when mixing with DOPC. By using epi-detection and optimizing excitation and detection conditions, we are able to generate a clear vibrational contrast from d62-DPPC of 10% molar fraction in a single bilayer of DPPC/d62-DPPC mixture. We have developed and experimentally verified an image analysis model that can derive the relative molecular concentration from the difference of the two CARS intensities measured at the peak and dip frequencies of a CARS band. With the above strategies, we have measured the molar density of d62-DPPC in the coexisting domains inside the DOPC/d62-DPPC (1:1) supported bilayers incorporated with 0-40% cholesterol. The observed interesting changes of phospholipid organization upon addition of cholesterol to the bilayer are discussed.  相似文献   

5.
6.
Coherent anti‐Stokes Raman scattering (CARS) microscopy is an emerging technique for identification of brain tumors. However, tumor identification by CARS microscopy on bulk samples and in vivo has been so far verified retrospectively on histological sections, which only provide a gross reference for the interpretation of CARS images without matching at cellular level. Therefore, fluorescent labels were exploited for direct assessment of the interpretation of CARS images of solid and infiltrative tumors. Glioblastoma cells expressing green fluorescent protein (GFP) were used for induction of tumors in mice (n = 7). The neoplastic nature of cells imaged by CARS microscopy was unequivocally verified by addressing two‐photon fluorescence of GFP on fresh brain slices and in vivo. In fresh unfixed biopsies of human glioblastoma (n = 10), the fluorescence of 5‐aminolevulinic acid‐induced protoporphyrin IX was used for identification of tumorous tissue. Distinctive morphological features of glioblastoma cells, i.e. larger nuclei, evident nuclear membrane and nucleolus, were identified in the CARS images of both mouse and human brain tumors. This approach demonstrates that the chemical contrast provided by CARS allows the localization of infiltrating tumor cells in fresh tissue and that the cell morphology in CARS images is useful for tumor recognition.

Experimental glioblastoma expressing green fluorescent protein.  相似文献   


7.
Here we present a microscope setup for coherent anti-Stokes Raman scattering (CARS) imaging, devised to specifically address the challenges of in vivo experiments. We exemplify its capabilities by demonstrating how CARS microscopy can be used to identify vitamin A (VA) accumulations in the liver of a living mouse, marking the positions of hepatic stellate cells (HSCs). HSCs are the main source of extracellular matrix protein after hepatic injury and are therefore the main target of novel nanomedical strategies in the development of a treatment for liver fibrosis. Their role in the VA metabolism makes them an ideal target for a CARS-based approach as they store most of the body's VA, a class of compounds sharing a retinyl group as a structural motive, a moiety that is well known for its exceptionally high Raman cross section of the C═C stretching vibration of the conjugated backbone.  相似文献   

8.

Background

Coherent anti-Stokes Raman scattering (CARS) microscopy provides fine resolution imaging and displays morphochemical properties of unstained tissue. Here, we evaluated this technique to delineate and identify brain tumors.

Methods

Different human tumors (glioblastoma, brain metastases of melanoma and breast cancer) were induced in an orthotopic mouse model. Cryosections were investigated by CARS imaging tuned to probe C-H molecular vibrations, thereby addressing the lipid content of the sample. Raman microspectroscopy was used as reference. Histopathology provided information about the tumor''s localization, cell proliferation and vascularization.

Results

The morphochemical contrast of CARS images enabled identifying brain tumors irrespective of the tumor type and properties: All tumors were characterized by a lower CARS signal intensity than the normal parenchyma. On this basis, tumor borders and infiltrations could be identified with cellular resolution. Quantitative analysis revealed that the tumor-related reduction of CARS signal intensity was more pronounced in glioblastoma than in metastases. Raman spectroscopy enabled relating the CARS intensity variation to the decline of total lipid content in the tumors. The analysis of the immunohistochemical stainings revealed no correlation between tumor-induced cytological changes and the extent of CARS signal intensity reductions. The results were confirmed on samples of human glioblastoma.

Conclusions

CARS imaging enables label-free, rapid and objective identification of primary and secondary brain tumors. Therefore, it is a potential tool for diagnostic neuropathology as well as for intraoperative tumor delineation.  相似文献   

9.
An experimental evaluation of the information content of two complimentary techniques, linear Raman and coherent anti‐Stokes Raman scattering (CARS) microscopy, is presented. CARS is a nonlinear variant of Raman spectroscopy that enables rapid acquisition of images within seconds in combination with laser scanning microscopes. CARS images were recorded from thin colon tissue sections at 2850, 1660, 1450 and 1000 cm–1 and compared with Raman images. Raman images were obtained from univariate and multivariate (k‐means clustering) methods, whereas all CARS images represent univariate results. Variances within tissue sections could be visualized in chemical maps of CARS and Raman images. However, identification of tissue types and characterization of variances between different tissue sections were only possible by analysis of cluster mean spectra, obtained from k‐means cluster analysis. This first comparison establishes the foundation for further development of the CARS technology to assess tissue. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Coherent anti-Stokes Raman scattering (CARS) microscopy is applied for the first time for the evaluation of the protein secondary structure of polyglutamine (polyQ) aggregates in vivo. Our approach demonstrates the potential for translating information about protein structure that has been obtained in vitro by X-ray diffraction into a microscopy technique that allows the same protein structure to be detected in vivo. For these studies, fibres of polyQ containing peptides (D(2)Q(15)K(2)) were assembled in vitro and examined by electron microscopy and X-ray diffraction methods; the fibril structure was shown to be cross β-sheet. The same polyQ fibres were evaluated by Raman spectroscopy and this further confirmed the β-sheet structure, but indicated that the structure is highly rigid, as indicated by the strong Amide I signal at 1659 cm(-1). CARS spectra were simulated using the Raman spectrum taking into account potential non-resonant contributions, providing evidence that the Amide I signal remains strong, but slightly shifted to lower wavenumbers. Combined CARS (1657 cm(-1)) and multi-photon fluorescence microscopy of chimeric fusions of yellow fluorescent protein (YFP) with polyQ (Q40) expressed in the body wall muscle cells of Caenorhabditis elegans nematodes (1 day old adult hermaphrodites) revealed diffuse and foci patterns of Q40-YFP that were both fluorescent and exhibited stronger CARS (1657 cm(-1)) signals than in surrounding tissues at the resonance for the cross β-sheet polyQ in vitro.  相似文献   

11.
Monitoring living cells in real‐time is important in order to unravel complex dynamic processes in life sciences. In particular the dynamics of initiation and progression of degenerative diseases is intensely studied. In atherosclerosis the thickening of arterial walls is related to high lipid levels in the blood stream, which trigger the lipid uptake and formation of droplets as neutral lipid reservoirs in macrophages in the arterial wall. Unregulated lipid uptake finally results in foam cell formation, which is a hallmark of atherosclerosis. In previous studies, the uptake and storage of different fatty acids was monitored by measuring fixed cells. Commonly employed fluorescence staining protocols are often error prone because of cytotoxicity and unspecific fluorescence backgrounds. By following living cells with Raman spectroscopic imaging, lipid uptake of macrophages was studied with real‐time data acquisition. Isotopic labeling using deuterated palmitic acid has been combined with spontaneous and stimulated Raman imaging to investigate the dynamic process of fatty acid storage in human macrophages for incubation times from 45 min to 37 h. Striking heterogeneity in the uptake rate and the total concentration of deuterated palmitic acid covering two orders of magnitude is detected in single as well as ensembles of cultured human macrophages.

SRS signal of deuterated palmitic acid measured at the CD vibration band after incorporation into living macrophages.  相似文献   


12.
Stimulated Raman Scattering (SRS) is a fast chemical imaging technique with remarkable bioscience applications. Cross Phase Modulation (XPM) is a ubiquitous nonlinear phenomenon that can create spurious background signals that render difficult a high-contrast imaging in SRS measurements. The XPM-induced signal is usually suppressed using high numerical aperture (NA) microscope objectives or condensers to collect the transmitted excitation beam. However, these high NA optics feature short working distances, hence they are not compatible with stage-top incubators, that are necessary to perform live-cell time-lapse experiments in controlled environments. Here, we show a 3D printed high NA compact catadioptric lens that fits inside stage-top incubators and allows the collection of XPM-free SRS signals. The lens delivers SRS images and spectra with a quality comparable to a signal collection with a high-NA microscope objective. We also demonstrate the compatibility of the 3D printed lens with other nonlinear microscopies usually associated with SRS in multimodal microscopes.  相似文献   

13.
The non‐destructive and label‐free monitoring of extracellular matrix (ECM) remodeling and degradation processes is a great challenge. Raman spectroscopy is a non‐contact method that offers the possibility to analyze ECM in situ without the need for tissue processing. Here, we employed Raman spectroscopy for the detection of heart valve ECM, focusing on collagen fibers. We screened the leaflets of porcine aortic valves either directly after dissection or after treatment with collagenase. By comparing the fingerprint region of the Raman spectra of control and treated tissues (400–1800 cm–1), we detected no significant differences based on Raman shifts; however, we found that increasing collagen degradation translated into decreasing Raman signal intensities. After these proof‐of‐principal experiments, we compared Raman spectra of native and cryopreserved valve tissues and revealed that the signal intensities of the frozen samples were significantly lower compared to those of native tissues, similar to the data seen in the enzymatically‐degraded tissues. In conclusion, our data demonstrate that Raman microscopy is a promising, non‐destructive and non‐contact tool to probe ECM state in situ. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The vast majority of environmental bacteria remain uncultured, despite two centuries of effort in cultivating microorganisms. Our knowledge of their physiology and metabolic activity depends to a large extent on methods capable of analyzing single cells. Bacterial identification is a key step required by all currently used single-cell imaging techniques and is typically performed by means of fluorescent labeling. However, fluorescent cells cannot be visualized by ion- and electron microscopy and thus only correlative, indirect, cell identification is possible. Here we present a new method of bacterial identification by in situ hybridization coupled to the deposition of elemental silver nanoparticles (silver-DISH). We show that hybridized cells containing silver can be directly visualized by light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry (nanoSIMS), and confocal Raman micro-spectroscopy. Silver-DISH did not alter the isotopic (13C) and elemental composition of stable-isotope probed cells more than other available hybridization methods, making silver-DISH suitable for broad applications in stable-isotope labeling studies. Additionally, we demonstrate that silver-DISH can induce a surface-enhanced Raman scattering (SERS) effect, amplifying the Raman signal of biomolecules inside bacterial cells. This makes silver-DISH the only currently available method that is capable of delivering a SERS-active substrate inside specifically targeted microbial cells.  相似文献   

15.
Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600-3200 cm−1, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics.  相似文献   

16.
Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate.  相似文献   

17.
Targeted lignin modification in bioenergy crops could potentially improve conversion efficiency of lignocellulosic biomass to biofuels. To better assess the impact of lignin modification on overall cell wall structure, wild-type and lignin-downregulated alfalfa lines were imaged using coherent anti-Stokes Raman scattering (CARS) microscopy. The 1,600-cm?1 Raman mode was used in CARS imaging to specifically represent the lignin signal in the plant cell walls. The intensities of the CARS signal follow the general trend of lignin contents in cell walls from both wild-type and lignin-downregulated plants. In the downregulated lines, the overall reduction of lignin content agreed with the previously reported chemical composition. However, greater reduction of lignin content in cell corners was observed by CARS imaging, which could account for the enhanced susceptibility to chemical and enzymatic hydrolysis observed previously.  相似文献   

18.
Photobiomodulation (PBM) involves light to activate cellular signaling pathways leading to cell proliferation or death. In this work, fluorescence and Coherent anti‐Stokes Raman Scattering (CARS) imaging techniques were applied to assess apoptosis in human cervical cancer cells (HeLa) induced by near infrared (NIR) laser light (808 nm). Using the Caspase 3/7 fluorescent probe to identify apoptotic cells, we found that the pro‐apoptotic effect is significantly dependent of irradiation dose. The highest apoptosis rate was noted for the lower irradiation doses, that is, 0.3 J/cm2 (~58%) and 3 J/cm2 (~28%). The impact of light doses on proteins/lipids intracellular metabolism and distribution was evaluated using CARS imaging, which revealed apoptosis‐associated reorganization of nuclear proteins and cytoplasmic lipids after irradiation with 0.3 J/cm2. Doses of NIR light causing apoptosis (0.3, 3 and 30 J/cm2) induced a gradual increase in the nuclear protein level over time, in contrast to proteins in cells non‐irradiated and irradiated with 10 J/cm2. Furthermore, irradiation of the cells with the 0.3 J/cm2 dose resulted in lipid droplets (LDs) accumulation, which was apparently caused by an increase in reactive oxygen species (ROS) generation. We suggest that PBM induced apoptosis could be caused by the ability of NIR light to trigger excessive LDs formation which, in turn, induces cellular cytotoxicity.   相似文献   

19.
Oriented fibers drawn from aqueous gels of calf-thymus DNA were maintained at constant relative humidites of 75 and 92% to yield canonical A-DNA and B-DNA structures, respectively. Raman spectra of the two forms of DNA were recorded over the spectral range 300–4000 cm?1. The authenticated DNA fibers were deuterated in hygrostatic cells containing D2O at appropriate relative humidities, and the corresponding spectra of deuterated DNAs were also obtained. The spectra reveal all of the Raman scattering frequencies and intensities characteristic of A- and B-DNA structures in both nondeuterated and deuterated froms, as well as the frequencies and intensities of adsorbed solvent molecules from which the hydration content of DNA fibers can be calculated. Numerous conformation-sensitive vibrational modes of DNA bases and phosphate groups have been identified throughout the 300–1700-cm?1 interval. Evidence has also been obtained for conformation sensitivity of deoxyribosyl CH stretching modes in the 2800–3000-cm?1 region. Raman lines of both the backbone and the bases are proposed as convenient indicators of A- and B-DNA structures. The results are extended to Z-DNA models investigated previously. Some implications of these findings for the determination of DNA or RNA structure from Raman spectra of nucleoproteins and viruses are considered.  相似文献   

20.
We present a vibrational imaging study of axonal myelin under physiological conditions by laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy. We use spinal cord white matter strips that are isolated from guinea pigs and kept alive in oxygen bubbled Krebs' solution. Both forward- and epi-detected CARS are used to probe the parallel axons in the spinal tissue with a high vibrational contrast. With the CARS signal from CH2 vibration, we have measured the ordering degree and the spectral profile of myelin lipids. Via comparison with the ordering degrees of lipids in myelin figures formed of controlled lipid composition, we show that the majority of the myelin membrane is in the liquid ordered phase. By measuring the myelin thickness and axon diameter, the value of g ratio is determined to be 0.68 with forward- and 0.63 with epi-detected CARS. Detailed structures of the node of Ranvier and Schmidt-Lanterman incisure are resolved. We have also visualized the ordering of water molecules between adjacent bilayers inside the myelin. Our observations provide new insights into myelin organization, complementary to the knowledge from light and electron microscopy studies of fixed and dehydrated tissues. In addition, we have demonstrated simultaneous CARS imaging of myelin and two-photon excitation fluorescence imaging of intra- and extraaxonal Ca2+. The current work opens up a new approach to the study of spinal cord injury and demyelinating diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号