首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The plasma membrane Ca(2+)-ATPase (PMCA) plays an essential role in maintaining low cytosolic Ca(2+) in resting platelets. During platelet activation PMCA is phosphorylated transiently on tyrosine residues resulting in inhibition of the pump that enhances elevation of Ca(2+). Tyrosine phosphorylation of many proteins during platelet activation results in their association with the cytoskeleton. Consequently, in the present study we asked if PMCA interacts with the platelet cytoskeleton. We observed that very little PMCA is associated with the cytoskeleton in resting platelets but that approximately 80% of total PMCA (PMCA1b + PMCA4b) is redistributed to the cytoskeleton upon activation with thrombin. Tyrosine phosphorylation of PMCA during activation was not associated with the redistribution because tyrosine-phosphorylated PMCA was not translocated specifically to the cytoskeleton. Because PMCA b-splice isoforms have C-terminal PSD-95/Dlg/ZO-1 homology domain (PDZ)-binding domains, a C-terminal peptide was used to disrupt potential PDZ domain interactions. Activation of saponin-permeabilized platelets in the presence of the peptide led to a significant decrease of PMCA in the cytoskeleton. PMCA associated with the cytoskeleton retained Ca(2+)-ATPase activity. These results suggest that during activation active PMCA is recruited to the cytoskeleton by interaction with PDZ domains and that this association provides a microenvironment with a reduced Ca(2+) concentration.  相似文献   

2.
The plasma membrane Ca(2+)-ATPase (PMCA) pumps play an important role in the maintenance of precise levels of intracellular Ca(2+) [Ca(2+)](i), essential to the functioning of neurons. In this article, we review evidence showing age-related changes of the PMCAs in synaptic plasma membranes (SPMs). PMCA activity and protein levels in SPMs diminish progressively with increasing age. The PMCAs are very sensitive to oxidative stress and undergo functional and structural changes when exposed to oxidants of physiological relevance. The major signatures of oxidative modification in the PMCAs are rapid inactivation, conformational changes, aggregation, internalization from the plasma membrane and proteolytic degradation. PMCA proteolysis appears to be mediated by both calpains and caspases. The predominance of one proteolytic pathway vs the other, the ensuing pattern of PMCA degradation and its consequence on pump activity depends largely on the type of insult, its intensity and duration. Experimental reduction of PMCA expression not only alters the dynamics of cellular Ca(2+) handling but also has a myriad of downstream consequences on various aspects of cell function, indicating a broad role of these pumps. Age- and oxidation-related down-regulation of the PMCAs may play an important role in compromised neuronal function in the aging brain and its several-fold increased susceptibility to neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and stroke. Therapeutic approaches that protect the PMCAs and stabilize [Ca(2+)](i) homeostasis may be capable of slowing and/or preventing neuronal degeneration. The PMCAs are therefore emerging as a new class of drug targets for therapeutic interventions in various chronic degenerative disorders.  相似文献   

3.
The cerebellum expresses one of the highest levels of the plasma membrane Ca(2+) ATPase, isoform 2 in the mammalian brain. This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex; i.e. the Purkinje neurons (PNs). Here we review recent evidence, including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2 (PMCA2) knockout mouse, to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour. These studies have also revealed that deletion of PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development, they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.  相似文献   

4.
Calreticulin (CRT) and calnexin (CLNX) are lectin chaperones that participate in protein folding in the endoplasmic reticulum (ER). CRT is a soluble ER lumenal protein, whereas CLNX is a transmembrane protein with a cytosolic domain that contains two consensus motifs for protein kinase (PK) C/proline- directed kinase (PDK) phosphorylation. Using confocal Ca(2+) imaging in Xenopus oocytes, we report here that coexpression of CLNX with sarco endoplasmic reticulum calcium ATPase (SERCA) 2b results in inhibition of intracellular Ca(2+) oscillations, suggesting a functional inhibition of the pump. By site-directed mutagenesis, we demonstrate that this interaction is regulated by a COOH-terminal serine residue (S562) in CLNX. Furthermore, inositol 1,4,5-trisphosphate- mediated Ca(2+) release results in a dephosphorylation of this residue. We also demonstrate by coimmunoprecipitation that CLNX physically interacts with the COOH terminus of SERCA2b and that after dephosphorylation treatment, this interaction is significantly reduced. Together, our results suggest that CRT is uniquely regulated by ER lumenal conditions, whereas CLNX is, in addition, regulated by the phosphorylation status of its cytosolic domain. The S562 residue in CLNX acts as a molecular switch that regulates the interaction of the chaperone with SERCA2b, thereby affecting Ca(2+) signaling and controlling Ca(2+)-sensitive chaperone functions in the ER.  相似文献   

5.
Park WH  Kim HK  Nam KS  Shon YH  Jeon BH  Moon SK  Kim MG  Kim CH 《Life sciences》2004,75(25):3063-3076
Geiji-Bokryung-Hwan (GBH) was studied on antiplatelet activity in human platelet suspensions. GBH consists of the 5 herbs Cinnamomi Ramulus, Poria Cocos, Mountan Cortex Radicis, Paeoniae Radix, and Persicae Semen, which have been used in herbal medicine for thousands of years for atherosclerosis. The mechanism involved in the antiplatelet activity of GBH in human platelet suspensions was investigated. GBH inhibited platelet aggregation and Ca2+ mobilization in a concentration-dependent manner without increasing intracellular cyclic AMP and cyclic GMP. GBH had no inhibitory effect on thromboxane B2 (TXB2) production in cell-free systems. Collagen-related peptide (CRP)-induced Ca2+ mobilization is regulated by phospholipase C-2 (PLC-gamma2) activation. We evaluated the effect of GBH on tyrosine phosphorylation of PLC-gamma2 and the production of inositol-1,4,5-trisphosphate (IP3). GBH at concentrations that inhibited platelet aggregation and Ca2+ mobilization had no effects on tyrosine phosphorylation of PLC-gamma2 or on the formation of IP3 induced by CRP. Similar results were obtained with thrombin-induced platelet activation. GBH inhibited platelet aggregation and Ca2+ mobilization induced by thrombin without affecting the production of IP3. We then evaluated the effect of GBH on the binding of IP3 to its receptor. GBH at high concentrations partially blocked the binding of IP3 to its receptor. Therefore, the results suggested that GBH suppresses Ca2+ mobilization at a step distal to IP3 formation. GBH may provide a good tool for investigating Ca2+ mobilization.  相似文献   

6.
The Ca2+ signaling protein calmodulin (CaM) stimulates Ca2+ pumping in the plasma-membrane Ca2+-ATPase (PMCA) by binding to an autoinhibitory domain, which then dissociates from the catalytic domain of PMCA to allow full activation of the enzyme. We measured single-molecule fluorescence trajectories with polarization modulation to track the conformation of the autoinhibitory domain of PMCA pump bound to fluorescently labeled CaM. Interchange of the autoinhibitory domain between associated and dissociated conformations was detected at a physiological Ca2+ concentration of 0.15 microM, where the enzyme is only partially active, but not at 25 microM, where the enzyme is fully activated. In previous work we showed that the conformation of the autoinhibitory domain in PMCA-CaM complexes could be monitored by the extent of modulation of single-molecule fluorescence generated with rotating excitation polarization. In the present work, we determined the timescale of association and dissociation of the autoinhibitory domain with the catalytic regions of the PMCA. Association of the autoinhibitory domain was rare at a high Ca2+ concentration (25 microM). At a lower Ca2+ concentration (0.15 microM), conformations of the autoinhibitory domain interchanged with a dissociation rate of 0.042 +/- 0.011 sec(-1) and an association rate of 0.023 +/- 0.006 sec-1. The results indicate that the response time of PMCA upon a reduction in Ca2+ is limited to tens of seconds by autoinhibitory dynamics. This property may reduce the sensitivity of PMCA to transient reductions in intracellular Ca2+. We suggest that the dynamics of the autoinhibitory domain may play a novel role in regulating PMCA activity.  相似文献   

7.
The plasma membrane Ca(2+)-ATPase (PMCA) is an ATP-driven pump that is critical for the maintenance of low resting [Ca(2+)](i) in all eukaryotic cells. Metabolic stress, either due to inhibition of mitochondrial or glycolytic metabolism, has the capacity to cause ATP depletion and thus inhibit PMCA activity. This has potentially fatal consequences, particularly for non-excitable cells in which the PMCA is the major Ca(2+) efflux pathway. This is because inhibition of the PMCA inevitably leads to cytosolic Ca(2+) overload and the consequent cell death. However, the relationship between metabolic stress, ATP depletion and inhibition of the PMCA is not as simple as one would have originally predicted. There is increasing evidence that metabolic stress can lead to the inhibition of PMCA activity independent of ATP or prior to substantial ATP depletion. In particular, there is evidence that the PMCA has its own glycolytic ATP supply that can fuel the PMCA in the face of impaired mitochondrial function. Moreover, membrane phospholipids, mitochondrial membrane potential, caspase/calpain cleavage and oxidative stress have all been implicated in metabolic stress-induced inhibition of the PMCA. The major focus of this review is to challenge the conventional view of ATP-dependent regulation of the PMCA and bring together some of the alternative or additional mechanisms by which metabolic stress impairs PMCA activity resulting in cytosolic Ca(2+) overload and cytotoxicity.  相似文献   

8.
To investigate the mechanisms by which low intracellular pH influences calcium signaling, I have injected HCl, and in some experiments CaCl(2), into snail neurons while recording intracellular pH (pH(i)) and calcium concentration ([Ca(2+)](i)) with ion-sensitive microelectrodes. Unlike fluorescent indicators, these do not increase buffering. Slow injections of HCl (changing pH(i) by 0.1-0.2 pH units min(-1)) first decreased [Ca(2+)](i) while pH(i) was still close to normal, but then increased [Ca(2+)](i) when pH(i) fell below 6.8-7. As pH(i) recovered after such an injection, [Ca(2+)](i) started to fall but then increased transiently before returning to its preinjection level. Both the acid-induced decrease and the recovery-induced increase in [Ca(2+)](i) were abolished by cyclopiazonic acid, which empties calcium stores. Caffeine with or without ryanodine lowered [Ca(2+)](i) and converted the acid-induced fall in [Ca(2+)](i) to an increase. Injection of ortho-vanadate increased steady-state [Ca(2+)](i) and its response to acidification, which was again blocked by CPA. The normal initial response to 10 mM caffeine, a transient increase in [Ca(2+)](i), did not occur with pH(i) below 7.1. When HCl was injected during a series of short CaCl(2) injections, the [Ca(2+)](i) transients (recorded as changes in the potential (V(Ca)) of the Ca(2+)-sensitive microelectrode), were reduced by only 20% for a 1 pH unit acidification, as was the rate of recovery after each injection. Calcium transients induced by brief depolarizations, however, were reduced by 60% by a similar acidification. These results suggest that low pH(i) has little effect on the plasma membrane calcium pump (PMCA) but important effects on the calcium stores, including blocking their response to caffeine. Acidosis inhibits spontaneous calcium release via the RYR, and leads to increased store content which is unloaded when pH(i) returns to normal. Spontaneous release is enhanced by the rise in [Ca(2+)](i) caused by inhibiting the PMCA.  相似文献   

9.
Mechanism(s) underlying activation of store-operated Ca2+ entry currents, ISOC, remain incompletely understood. F-actin configuration is an important determinant of channel function, although the nature of interaction between the cytoskeleton and ISOC channels is unknown. We examined whether the spectrin membrane skeleton couples Ca2+ store depletion to Ca2+ entry. Thapsigargin activated an endothelial cell ISOC (-45 pA at -80 mV) that reversed at +40 mV, was inwardly rectifying when Ca2+ was the charge carrier, and was inhibited by La3+ (50 microM). Disruption of the spectrin-protein 4.1 interaction at residues A207-V445 of betaSpIISigma1 decreased the thapsigargin-induced global cytosolic Ca2+ response by 50% and selectively abolished the endothelial cell ISOC, without altering activation of a nonselective current through cyclic nucleotide-gated channels. In contrast, disruption of the spectrin-actin interaction at residues A47-K186 of betaSpIISigma1 did not decrease the thapsigargin-induced global cytosolic Ca2+ response or inhibit ISOC. Results indicate that the spectrin-protein 4.1 interaction selectively controls ISOC, indicating that physical coupling between calcium release and calcium entry is reliant upon the spectrin membrane skeleton.  相似文献   

10.
In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype.  相似文献   

11.
The highly cooperative nature of Ca2+-dependent exocytosis is very important for the precise regulation of transmitter release. It is not known whether the number of binding sites on the Ca2+ sensor can be modulated or not. We have previously reported that protein kinase C (PKC) activation sensitizes the Ca2+ sensor for exocytosis in pituitary gonadotropes. To further unravel the underlying mechanism of how the Ca2+ sensor is modulated by protein phosphorylation, we have performed kinetic modeling of the exocytotic burst and investigated how the kinetic parameters of Ca2+-triggered fusion are affected by PKC activation. We propose that PKC sensitizes exocytosis by reducing the number of calcium binding sites on the Ca2+ sensor (from three to two) without significantly altering the Ca2+-binding kinetics. The reduction in the number of Ca2+-binding steps lowers the threshold for release and up-regulates release of fusion-competent vesicles distant from Ca2+ channels.  相似文献   

12.
The mechanisms involved in the effect of ethanol on Ca2+ entry and aggregability have been investigated in human platelets in order to shed new light on the pathogenesis of alcohol consumption. Ethanol (50 mM) induced H2O2 production in platelets by Ca2+-dependent and independent mechanisms. Ca2+ entry induced by ethanol was impaired by catalase. Ethanol reduced SOCE mediated by depletion of the 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ)-sensitive acidic stores but enhances SOCE regulated by the dense tubular system. This effect was abolished by treatment with catalase or the sulphydryl group reducing agent dithiotreitol (DTT). Similarly, the anti-aggregant effect of ethanol was prevented by platelet treatment with catalase or DTT. In conclusion we provide considerable evidence that ethanol alters Ca2+ entry and reduces thrombin-induced aggregation as a result of the generation of H2O2 and the oxidation of sulphydryl groups in human platelets.  相似文献   

13.
We studied the phosphorylation (activation status) of c-Src and CaMKII in MEFs either wild type for calreticulin, calreticulin-null, or rescued with full-length calreticulin. We found that calreticulin-null cells were poorly spread on the substratum and formed few, if any, focal contacts. Fibronectin expression and deposition were lower in calreticulin-null MEFs compared to calreticulin-expressing cells, which also exhibited increased c-Src and CaMKII phosphorylation (activity). Plating MEFs on preformed fibronectin rescued the poor adhesive phenotype of calreticulin-null cells, and caused a decrease in c-Src Y418 phosphorylation (activity). c-Src inhibition caused the calreticulin-null MEFs to become well spread on the substratum and to make many prominent focal contacts. Calmodulin and CaMKII inhibition caused similar results, along with a notable increase in paxillin phosphorylation (activation). To test if the calcium storage function of calreticulin was responsible for these effects, we manipulated intracellular [Ca(2+)]. Lowering [Ca(2+)](ER) caused an increase in c-Src phosphorylation and a decrease in fibronectin abundance. Conversely, increasing [Ca(2+)] caused opposite effects. These results suggest that calreticulin regulates both the c-Src and calmodulin/CaMKII pathways, enabling cells to be better spread on the substratum by allowing greater fibronectin deposition and increased focal contact formation.  相似文献   

14.
15.
16.
The effects of actin cytoskeleton disruption by cytochalasin D and latrunculin A on Ca2+ signals evoked by ADP, UTP or thapsigargin were investigated in glioma C6 cells. Despite the profound alterations of the actin cytoskeleton architecture and cell morphology, ADP and UTP still produced cytosolic calcium elevation in this cell line. However, calcium mobilization from internal stores and Ca2+ influx through store-operated Ca2+ channels induced by ADP and UTP were strongly reduced. Cytochalasin D and latrunculin A also diminished extracellular Ca2+ influx in unstimulated glioma C6 cells previously incubated in Ca2+ free buffer. In contrast, the disruption of the actin cytoskeleton had no effect on thapsigargin-induced Ca2+ influx in this cell line. Both agonist- and thapsigargin-generated Ca2+ entry was significantly decreased by the blocker of store-operated Ca2+ channels, 2-aminoethoxydiphenylborate. The data reveal that two agonists and thapsigargin activate store-operated Ca2+ channels but the mechanism of activation seems to be different. While the agonists evoke a store-mediated Ca2+ entry that is dependent on the actin cytoskeleton, thapsigargin apparently activates an additional mechanism, which is independent of the disruption of the cytoskeleton.  相似文献   

17.
There is increasing evidence to suggest that Ca2+-calmodulin dependent protein kinase (CaMK) regulates the sarcoplasmic reticulum (SR) function and thus plays an important role in modulating the cardiac performance. Because intracellular Ca2+-overload is an important factor underlying cardiac dysfunction in a heart disease, its effect on SR CaMK was examined in the isolated rat heart preparations. Ca2+-depletion for 5 min followed by Ca2+-repletion for 30 min, which is known to produce intracellular Ca2+-overload, was observed to attenuate cardiac function as well as SR Ca2+-uptake and Ca2+-release activities. Attenuated SR function in the heart was associated with reduced CaMK phosphorylation of the SR Ca2+-cycling proteins such as Ca2+-release channel, Ca2+-pump ATPase, and phospholamban, decreased CaMK activity, and depressed levels of SR Ca2+-cycling proteins. These results indicate that alterations in cardiac performance and SR function following the occurrence of intracellular Ca2+-overload may partly be due to changes in the SR CaMK activity.  相似文献   

18.
Calcium influx is critical for T cell activation. Evidence has been presented that T cell receptor-stimulated calcium influx in helper T lymphocytes occurs via channels activated as a consequence of depletion of intracellular calcium stores, a mechanism known as capacitative Ca(2+) entry (CCE). However, two key questions have not been addressed. First, the mechanism of calcium influx in cytotoxic T cells has not been examined. While the T cell receptor-mediated early signals in helper and cytotoxic T cells are similar, the physiology of the cells is strikingly different, raising the possibility that the mechanism of calcium influx is also different. Second, contact of T cells with antigen-presenting cells or targets involves a host of intercellular interactions in addition to those between antigen-MHC and the T cell receptor. The possibility that calcium influx pathways in addition to those activated via the T cell receptor may be activated by contact with relevant cells has not been addressed. We have used imaging techniques to show that target-cell-stimulated calcium influx in CTLs occurs primarily through CCE. We investigated the permeability of the CTL influx pathway for divalent cations, and compared it to the permeability of CCE in Jurkat human leukemic T cells. CCE in CTLs shows a similar ability to discriminate between calcium, barium, and strontium as CCE in Jurkat human leukemic T lymphocytes, where CCE is likely to mediated by Ca(2+) release-activated Ca(2+) current (CRAC) channels, suggesting that CRAC channels also underlie CCE in CTLs. These results are the first determination of the mechanism of calcium influx in cytotoxic T cells and the first demonstration that cell contact-mediated calcium signals in T cells occur via depletion-activated channels.  相似文献   

19.
The in vitro effects of ethanol on intracellular Ca(2+) homeostasis and tyrosine phosphorylation have been investigated in human platelets in order to clarify the cellular mechanisms underlying its described anti-aggregant effects. Ethanol (1-50 mM) reduced, in a dose-dependent manner, the rate and amplitude of aggregation and attenuated the phosphotyrosine content both induced by 0.1U/ml of the physiological ligand, thrombin. Thrombin-induced Ca(2+) entry to the cytosol was significantly reduced, and capacitative Ca(2+) entry (CCE) significantly altered, by 50 mM ethanol, so that ethanol reduces CCE mediated by depletion of the 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ)-sensitive store but enhances CCE induced by the TBHQ-insensitive pool. In conclusion, we provide considerable evidence that ethanol reduces thrombin-induced aggregation, which is likely a result of a significant inhibition of Ca(2+) entry, as well as a reduction in the activity of protein tyrosine kinases.  相似文献   

20.
G protein-coupled receptors can be directly modulated by changes in transmembrane voltage in a variety of cell types. Here we show that, while changes in the membrane voltage itself do not induce detectable modifications in the cytosolic Ca2+ concentration, platelet stimulation with thrombin or the PAR-1 and PAR-4 agonist peptides SFLLRN and AYPGKF, respectively, results in Ca2+ release from intracellular stores that is sensitive to the membrane depolarisation. Direct activation of G proteins or phospholipase C by AlF4 and m-3M3FBS, respectively, leads to Ca2+ release that is insensitive to changes in the membrane potential. Thapsigargin-, as well as OAG-induced Ca2+ entry are affected by the membrane voltage, probably as a result of the modification in the driving force for Ca2+ influx; however, hyperpolarisation does not enhance thrombin- or OAG-evoked Ca2+ entry probably revealing the presence of a voltage-sensitive regulatory mechanism. Transmembrane voltage also modulates the activity of the plasma membrane Ca2+-ATPase (PMCA) most likely due to a decrease in the phosphotyrosine content of the pump. Thrombin-stimulated platelet aggregation is modulated by membrane depolarisation by a mechanism that is, at least partially, independent of Ca2+. These observations indicate that PAR-1 and PAR-4 receptors are modulated by the membrane voltage in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号