首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-mobility group box 1 (HMGB-1) is a strong chemo-attractive signal for both inflammatory and stem cells. The aim of this study is to evaluate the mechanisms regulating HMGB-1–mediated adhesion and rolling of c-kit+ cells and assess whether toll-like receptor-2 (TLR-2) and toll-like receptor-4 (TLR-4) of endothelial cells or c-kit+ cells are implicated in the activation of downstream migration signals to peripheral c-kit+ cells. Effects of HMGB-1 on the c-kit+ cells/endothelial interaction were evaluated by a cremaster muscle model in wild-type (WT), TLR-2 (−/−) and Tlr4 (LPS-del) mice. The mRNA and protein expression levels of endothelial nitric oxide synthase were determined by quantitative real-time PCR and immunofluorescence staining. Induction of crucial adhesion molecules for rolling and adhesion of stem cells and leukocytes were monitored in vivo and in vitro. Following local HMGB-1 administration, a significant increase in cell rolling was detected (32.4 ± 7.1% in ‘WT’ versus 9.9 ± 3.2% in ‘control’, P < 0.05). The number of firmly adherent c-kit+ cells was more than 13-fold higher than that of the control group (14.6 ± 5.1 cells/mm2 in ‘WT’ versus 1.1 ± 1.0 cells/mm2 in ‘control’, P < 0.05). In knockout animals, the fraction of rolling cells did not differ significantly from control levels. Firm endothelial adhesion was significantly reduced in TLR-2 (−/−) and Tlr4 (LPS-del) mice compared to WT mice (1.5 ± 1.4 cells/mm2 in ‘TLR-2 (−/−)’ and 2.4 ± 1.4 cells/mm2 in ‘Tlr4 (LPS-del)’ versus 14.6 ± 5.1 cells/mm2 in ‘WT’, P < 0.05). TLR-2 (−/−) and Tlr4 (LPS-del) stem cells in WT mice did not show significant reduction in rolling and adhesion compared to WT cells. HMGB-1 mediates c-kit+ cell recruitment via endothelial TLR-2 and TLR-4.  相似文献   

2.
AIM: To explore the approaches exerted by mesenchymal stem cells(MSCs) to improve Parkinson's disease(PD) pathophysiology.METHODS: MSCs were harvested from bone marrowof femoral bones of male rats, grown and propagated in culture. Twenty four ovariectomized animals were classified into 3 groups: Group(1) was control, Groups(2) and(3) were subcutaneously administered with rotenone for 14 d after one month of ovariectomy for induction of PD. Then, Group(2) was left untreated, while Group(3) was treated with single intravenous dose of bone marrow derived MSCs(BM-MSCs). SRY gene was assessed by PCR in brain tissue of the female rats. Serum transforming growth factor beta-1(TGF-β1), monocyte chemoattractant protein-1(MCP-1) and brain derived neurotrophic factor(BDNF) levels were assayed by ELISA. Brain dopamine DA level was assayed fluorometrically, while brain tyrosine hydroxylase(TH) and nestin gene expression were detected by semi-quantitative real time PCR. Brain survivin expression was determined by immunohistochemical procedure. Histopathological investigation of brain tissues was also done.RESULTS: BM-MSCs were able to home at the injured brains and elicited significant decrease in serum TGF-β1(489.7 ± 13.0 vs 691.2 ± 8.0, P 0.05) and MCP-1(89.6 ± 2.0 vs 112.1 ± 1.9, P 0.05) levels associated with significant increase in serum BDNF(3663 ± 17.8 vs 2905 ± 72.9, P 0.05) and brain DA(874 ± 15.0 vs 599 ± 9.8, P 0.05) levels as well as brain TH(1.18 ± 0.004 vs 0.54 ± 0.009, P 0.05) and nestin(1.29 ± 0.005 vs 0.67 ± 0.006, P 0.05) genes expression levels. In addition to, producing insignificant increase in the number of positive cells for survivin(293.2 ± 15.9 vs 271.5 ± 15.9, P 0.05) expression. Finally, the brain sections showed intact histological structure of the striatum as a result of treatment with BM-MSCs. CONCLUSION: The current study sheds light on the therapeutic potential of BM-MSCs against PD pathophysiology via multi-mechanistic actions.  相似文献   

3.
Acylation stimulating protein (ASP, C3adesArg) is an adipose tissue derived hormone that stimulates triglyceride (TG) synthesis. ASP stimulates lipoprotein lipase (LPL) activity by relieving feedback inhibition caused by fatty acids (FA). The present study examines plasma ASP and lipids in male and female LPL-deficient subjects primarily with the P207L mutation, common in the population of Quebec, Canada. We evaluated the fasting and postprandial states of LPL heterozygotes and fasting levels in LPL homozygotes. Homozygotes displayed increased ASP (58–175% increase, P < 0.05–0.01), reduced HDL-cholesterol (64–75% decrease, P < 0.0001), and elevated levels of TG (19–38-fold, P < 0.0001) versus control (CTL) subjects. LPL heterozygotes with normal fasting TG (1.3–1.9 mmol/l) displayed increased ASP (101–137% increase, P < 0.05–0.01) and delayed TG clearance after a fatload; glucose levels remained similar to controls. Hypertriglyceridemics with no known LPL mutation also had increased ASP levels (63–192% increase, P < 0.001). High-TG LPL heterozygotes were administered a fatload before and after fibrate treatment. The treatment reduced fasting and postprandial plasma ASP, TG, and FA levels without changing insulin or glucose levels. ASP enhances adipose tissue fatty-acid trapping following a meal; however in LPL deficiency, high ASP levels are coupled with delayed lipid clearance.  相似文献   

4.
The goal of this study was to understand how the reconstituted HDL (rHDL) phospholipid (PL) composition affects its cholesterol efflux and anti-inflammatory properties. An ApoA-I mimetic peptide, 5A, was combined with either SM or POPC. Both lipid formulations exhibited similar in vitro cholesterol efflux by ABCA1, but 5A-SM exhibited higher ABCG1- and SR-BI-mediated efflux relative to 5A-POPC (P < 0.05). Injection of both rHDLs in rats resulted in mobilization of plasma cholesterol, although the relative potency was 3-fold higher for the same doses of 5A-SM than for 5A-POPC. Formation of preβ HDL was observed following incubation of rHDLs with both human and rat plasma in vitro, with 5A-SM inducing a higher extent of preβ formation relative to 5A-POPC. Both rHDLs exhibited anti-inflammatory properties, but 5A-SM showed higher inhibition of TNF-α, IL-6, and IL-1β release than did 5A-POPC (P < 0.05). Both 5A-SM and 5A-POPC showed reduction in total plaque area in ApoE−/− mice, but only 5A-SM showed a statistically significant reduction over placebo control and baseline (P < 0.01). The type of PL used to reconstitute peptide has significant influence on rHDL’s anti-inflammatory and anti-atherosclerosis properties.  相似文献   

5.
The aim of this study was to investigate the effects of cold stress on oxidative indexes, immune function, and the expression levels of heat shock protein (Hsp90, Hsp70, Hsp60, Hsp40, and Hsp27) in immune organs of chickens. Two hundred forty 15-day-old male chickens were randomly divided into 12 groups and kept under the temperature of (12 ± 1) °C for acute and chronic cold stress. There were one control group and five treatment groups for acute cold stress and three control groups and three treatment groups for chronic cold stress. The results showed that cold stress influence the activities of antioxidant enzymes in the immune organs. The activities of SOD and GSH-Px were first increased then decreased, and activity of total antioxidation capacity (T-AOC) was significantly decreased (P < 0.05) at the acute cold stress in chicks; however, T-AOC activities were significantly increased (P < 0.05) at the chronic cold stress in these tissues. Cold stress induced higher level of malondialdehyde (MDA) in chicken immune organs. In addition, the cytokine contents were increased in cold stress groups. As one protective factor, the expression levels of Hsps were increased significantly (P < 0.05) in both cold stress groups. These results suggested that cold stress induced the oxidative stress in the three tissues and influenced immune function of chicks. Higher expression of Hsps (Hsp90, Hsp70, Hsp60, Hsp40, and Hsp27) may play a role in protecting immune organs against cold stress.  相似文献   

6.
AIM: To evaluate changes in neurotransmission induced by a psychoactive beverage ayahuasca in the hippocampus and amygdala of naive rats. METHODS: The level of monoamines, their main metabolites and amino acid neurotransmitters concentrations were quantified using high performance liquid chromatography(HPLC). Four groups of rats were employed: saline-treated and rats receiving 250, 500 and 800 mg/kg of ayahuasca infusion(gavage). Animals were killed 40 min after drug ingestion and the structures stored at-80 ℃ until HPLC assay. The data from all groups were compared using Analysis of variance and Scheffé as post test and P 0.05 was accepted as significant. RESULTS: The results showed decreased concentrations of glycine(GLY)(0.13 ± 0.03 vs 0.29 ± 0.07, P 0.001) and γ-aminobutyric acid(GABA)(1.07 ± 0.14 vs 1.73 ± 0.25, P 0.001) in the amygdala of rats that received 500 of ayahuasca. Animals that ingested 800 mg/kg of ayahuasca also showed a reduction of GLY level(0.11 ± 0.01 vs 0.29 ± 0.07, P 0.001) and GABA(0.98 ± 0.06 vs 1.73 ± 0.25, P 0.001). In the hippocampus, increased GABA levels were found in rats that received all ayahuasca doses: 250 mg/kg(1.29 ± 0.19 vs 0.84 ± 0.21, P 0.05); 500 mg/kg(2.23 ± 038 vs 084 ± 0.21, P 0.05) and 800 mg/kg(1.98 ± 0.92 vs 0.84 ± 0.21, P 0.05). In addition, an increased utilization rate of all monoamines was found in the amygdala after ayahuasca administration in doses: 250 mg/kg(noradrenaline: 0.16 ± 0.02 vs 0.36 ± 0.06, P 0.01; dopamine: 0.39 ± 0.012 vs 2.39 ± 0.84, P 0.001; serotonin: 1.02 ± 0.22 vs 4.04 ± 0.91, P 0.001), 500 mg/kg(noradrenaline: 0.08 ± 0.02 vs 0.36 ± 0.06, P 0.001; dopamine: 0.33 ± 0.19 vs 2.39 ± 0.84, P 0.001; serotonin: 0.59 ± 0.08 vs 4.04 ± 0.91, P 0.001) and 800 mg/kg(noradrenaline: 0.16 ± 0.04 vs 0.36 ± 0.06, P 0.001; dopamine: 0.84 ± 0.65 vs2.39 ± 0.84, P 0.05; serotonin: 0.36 ± 0.02 vs 4.04 ± 0.91, P 0.001). CONCLUSION: Our data suggest increased release of inhibitory amino acids by the hippocampus and an increased utilization rate of monoamines by the amygdala after different doses of ayahuasca ingestion.  相似文献   

7.
Yin RX  Li YY  Liu WY  Zhang L  Wu JZ 《PloS one》2011,6(3):e17954

Background

Little is known about the interactions of apolipoprotein (Apo) A5 gene polymorphisms and alcohol consumption on serum lipid profiles. The present study was undertaken to detect the interactions of ApoA5–1131T>C, c.553G>T and c.457G>A polymorphisms and alcohol consumption on serum lipid levels.

Methodology/Principal Findings

A total of 516 nondrinkers and 514 drinkers were randomly selected from our previous stratified randomized cluster samples. Genotyping was performed by polymerase chain reaction and restriction fragment length polymorphism. The levels of serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), ApoA1 and ApoB were higher in drinkers than in nondrinkers (P<0.05–0.001). The genotypic and allelic frequencies of three loci were not different between the two groups. The interactions between –1131T>C genotypes and alcohol consumption on ApoB levels (P<0.05) and the ApoA1/ApoB ratio (P<0.01), between c.553G>T genotypes and alcohol consumption on low-density lipoprotein cholesterol (LDL-C) levels (P<0.05) and the ApoA1/ApoB ratio (P<0.05), and between c.457G>A genotypes and alcohol consumption on TG levels (P<0.001) were detected by factorial regression analysis after controlling for potential confounders. Four haplotypes (T-G-G, C-G-G, T-A-G and C-G-T) had frequencies ranging from 0.06 to 0.87. Three haplotypes (C-G-G, T-A-G, and C-G-T) were significantly associated with serum lipid parameters. The –1131T>C genotypes were correlated with TG, and c.553G>T and c.457G>A genotypes were associated with HDL-C levels in nondrinkers (P<0.05 for all). For drinkers, the –1131T>C genotypes were correlated with TC, TG, LDL-C, ApoB levels and the ApoA1/ApoB ratio (P<0.01 for all); c.553G>T genotypes were correlated with TC, TG, HDL-C and LDL-C levels (P<0.05–0.01); and c.457G>A genotypes were associated with TG, LDL-C, ApoA1 and ApoB levels (P<0.05–0.01).

Conclusions

The differences in some serum lipid parameters between the drinkers and nondrinkers might partly result from different interactions of the ApoA5 gene polymorphisms and alcohol consumption.  相似文献   

8.

Background

The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots.

Methodology/Principal Findings

To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL) were assessed by DXA, MRI and 1H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05), while there was no evidence for activation of p38 MAPK or IKKβ. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005) while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005). IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H2O peak, P<0.05), who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls.

Conclusions

This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the relative contributions of the various mediators of impaired insulin signaling in this population.  相似文献   

9.
Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker’s yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker’s yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker’s yeast.  相似文献   

10.
Hogg K  Wood C  McNeilly AS  Duncan WC 《PloS one》2011,6(9):e24877
Epigenetic changes in response to external stimuli are fast emerging as common underlying causes for the pre-disposition to adult disease. Prenatal androgenization is one such model that results in reproductive and metabolic features that are present in conditions such as polycystic ovary syndrome (PCOS). We examined the effect of prenatal androgens on liver function and metabolism of adult sheep. As non-alcoholic fatty liver disease is increased in PCOS we hypothesized that this, and other important liver pathways including metabolic function, insulin–like growth factor (IGF) and steroid receptivity, would be affected. Pregnant ewes received vehicle control (C; n = 5) or testosterone propionate (TP; n = 9) twice weekly (100 mg; i.m) from d62–102 (gestation 147 days). In a novel treatment paradigm, a second cohort received a direct C (n = 4) or TP (20 mg; n = 7) fetal injection at d62 and d82. In adults, maternal TP exposure resulted in increased insulin secretion to glucose load (P<0.05) and the histological presence of fatty liver (P<0.05) independent of central obesity. Additionally, hepatic androgen receptor (AR; P<0.05), glucocorticoid receptor (GR; P<0.05), UDP- glucose ceramide glucosyltransferase (UGCG; P<0.05) and IGF1 (P<0.01) expression were upregulated. The direct fetal intervention (C and TP) led to early fatty liver changes in all animals without differential changes in insulin secretion. Furthermore, hepatic phosphoenolpyruvate carboxykinase (PEPCK) was up-regulated in the fetal controls (P<0.05) and this was opposed by fetal TP (P<0.05). Hepatic estrogen receptor (ERα; P<0.05) and mitogen activated protein kinase kinase 4 (MAP2K4; P<0.05) were increased following fetal TP exposure. Adult liver metabolism and signaling can be altered by early exposure to sex steroids implicating epigenetic regulation of metabolic disturbances that are common in PCOS.  相似文献   

11.
We examined attitudes and behavior surrounding voluntary recycling in a population of low-income Hispanic women. Participants (N = 1,512) 18–55 years of age completed a self-report survey and responded to questions regarding household recycling behavior, recycling knowledge, recycling beliefs, potential barriers to recycling (transportation mode, time), acculturation, demographic characteristics (age, income, employment, marital status, education, number of children, birth country), and social desirability. Forty-six percent of participants (n = 810) indicated that they or someone else in their household recycled. In a logistic regression model controlling for social desirability, recycling behavior was related to increased age (P<0.05), lower acculturation (P<0.01), knowing what to recycle (P<0.01), knowing that recycling saves landfill space (P<0.05), and disagreeing that recycling takes too much time (P<0.001). A Sobel test revealed that acculturation mediated the relationship between recycling knowledge and recycling behavior (P<0.05). We offer new information on recycling behavior among Hispanic women and highlight the need for educational outreach and intervention strategies to increase recycling behavior within this understudied population.  相似文献   

12.

Background

Chlamydia trachomatis is responsible for trachoma, the primary cause of preventable blindness worldwide. Plans to eradicate trachoma using the World Health Organization''s SAFE program (Surgery, Antibiotics, Facial Cleanliness and Environment Improvement) have resulted in recurrence of infection and disease following cessation of treatment in many endemic countries, suggesting the need for a vaccine to control infection and trachomatous disease. Vaccine development requires, in part, knowledge of the mucosal host immune responses in both healthy and trachomatous conjuctivae—an area of research that remains insufficiently studied.

Methodology/Principal Findings

We characterized 25 secreted cytokines and chemokines from the conjunctival mucosa of individuals residing in a trachoma endemic region of Nepal using Luminex X100 multiplexing technology. Immunomodulating effects of concurrent C. trachomatis infection were also examined. We found that proinflammatory cytokines IL-1β (r = 0.259, P = 0.001) and TNFα (r = 0.168, P<0.05) were significantly associated with trachomatous disease and concurrent C. trachomatis infection compared with age and sex matched controls from the same region who did not have trachoma. In support of these findings, anti-inflammatory cytokine IL-1 receptor antagonist (IL-1Ra) was negatively associated with chronic scarring trachoma (r = −0.249, P = 0.001). Additional cytokines (Th1, IL-12p40 [r = −0.212, P<0.01], and Th2, IL-4 and IL-13 [r = −0.165 and −0.189, respectively, P<0.05 for both]) were negatively associated with chronic scarring trachoma, suggesting a protective role. Conversely, a pathogenic role for the Th3/Tr1 cytokine IL-10 (r = 0.180, P<0.05) was evident with increased levels for all trachoma grades. New risk factors for chronic scarring trachoma included IL-6 and IL-15 (r = 0.259 and 0.292, respectively, P<0.005 for both) with increased levels for concurrent C. trachomatis infections (r = 0.206, P<0.05, and r = 0.304, P<0.005, respectively). Chemokine protein levels for CCL11 (Eotaxin), CXCL8 (IL-8), CXCL9 (MIG), and CCL2 (MCP-1) were elevated in chronic scarring trachoma compared with age and sex matched controls (P<0.05, for all).

Conclusions/Significance

Our quantitative detection of previously uncharacterized and partially characterized cytokines, a soluble cytokine receptor, and chemokines for each trachoma grade and associations with C. trachomatis infections provide, to date, the most comprehensive immunologic evaluation of trachoma. These findings highlight novel pathologic and protective factors involved in trachomatous disease, which will aid in designing immunomodulating therapeutics and a vaccine.  相似文献   

13.
Skeletal muscle triglyceride accumulation is associated with insulin resistance in obesity. Recently, it has been suggested that α lipoic acid (ALA) improves insulin sensitivity by lowering triglyceride accumulation in nonadipose tissues via activation of skeletal muscle AMP-activated protein kinase (AMPK). We examined whether chronic ALA supplementation prevents muscular lipid accumulation that is associated with high-fat diets via activation of AMPK. In addition, we tested if ALA supplementation was able to improve insulin sensitivity in rats fed low- and high-fat diets (LFD, HFD). Supplementing male Wistar rats with 0.5% ALA for 8 weeks significantly reduced body weight, both on LFD and HFD (−24% LFD+ALA vs. LFD, P < 0.01, and −29% HFD+ALA vs. HFD, P < 0.001). Oil red O lipid staining revealed a 3-fold higher lipid content in skeletal muscle after HFD compared with LFD and ALA-supplemented groups (P < 0.05). ALA improved whole body glucose tolerance (∼20% lower total area under the curve (AUC) in ALA supplemented groups vs. controls, P < 0.05). These effects were not mediated by increased muscular AMPK activation or ALA-induced improvement of muscular insulin sensitivity. To conclude, the prevention of HFD-induced muscular lipid accumulation and the improved whole body glucose tolerance are likely secondary effects due to the anorexic nature of ALA.  相似文献   

14.

Background

Food allergy may affect the gastrointestinal tract and eosinophilia is often associated with allergic gastrointestinal disorders. Allergy to peanuts is a life-threatening condition and effective and safe treatments still need to be developed. The present study aimed to evaluate the effects of sustained oral exposure to peanuts on the esophageal and jejunal mucosa in sensitized mice. We also evaluated the effects of desensitization with epicutaneous immunotherapy (EPIT) on these processes.

Methods

Mice were sensitized by gavages with whole peanut protein extract (PPE) given with cholera toxin. Sensitized mice were subsequently exposed to peanuts via a specific regimen and were then analysed for eosinophilia in the esophagus and gut. We also assessed mRNA expression in the esophagus, antibody levels, and peripheral T-cell response. The effects of EPIT were tested when intercalated with sensitization and sustained oral peanut exposure.

Results

Sustained oral exposure to peanuts in sensitized mice led to severe esophageal eosinophilia and intestinal villus sub-atrophia, i.e. significantly increased influx of eosinophils into the esophageal mucosa (136 eosinophils/mm2) and reduced villus/crypt ratios (1.6±0.15). In the sera, specific IgE levels significantly increased as did secretion of Th2 cytokines by peanut-reactivated splenocytes. EPIT of sensitized mice significantly reduced Th2 immunological response (IgE response and splenocyte secretion of Th2 cytokines) as well as esophageal eosinophilia (50 eosinophils/mm2, p<0.05), mRNA expression of Th2 cytokines in tissue - eotaxin (p<0.05), IL-5 (p<0.05), and IL-13 (p<0.05) -, GATA-3 (p<0.05), and intestinal villus sub-atrophia (2.3±0.15). EPIT also increased specific IgG2a (p<0.05) and mRNA expression of Foxp3 (p<0.05) in the esophageal mucosa.

Conclusions

Gastro-intestinal lesions induced by sustained oral exposure in sensitized mice are efficaciously treated by allergen specific EPIT.  相似文献   

15.
Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function, which was possibly due to the decreasing apoptosis of jejunal mucosal cells and the improvement of intestinal microbiota.  相似文献   

16.
Chang D  Sha Q  Zhang X  Liu P  Rong S  Han T  Liu P  Pan H 《PloS one》2011,6(11):e27218

Objective

To clarify the presence of oxidative stress in patients with primary angle-closure glaucoma (PACG) and to investigate the relationship between oxidative stress and PACG.

Methods

Fifty patients with primary angle-closure glaucoma and fifty healthy controls of matched age and gender were included in the study prospectively. Serum samples were obtained to detect the oxidation degradation products malondialdehyde (MDA), conjugated diene (CD), 4-hydroxynonenal (4-HNE), advanced oxidation protein products (AOPP), protein carbonyl (PC), ischemia-modified albumin (IMA) and 8-hydroxydeoxyguanosin (8-OHdG).

Results

The concentration of MDA and CD in PACG patients was significantly higher than those of the control subjects (P<0.05, P<0.01). The serum 4-HNE concentrations were increased in PACG patients, but the differences with those of the healthy controls were not statistically significant. Compared to normal subjects, there was significant higher in serum AOPP and PC in PACG patients (P<0.01). PACG patients had higher levels of 8-OHdG in serum with respect to the comparative group of normal subjects (P<0.01). When plasma IMA levels in the PACG group were compared with those in the control group, significant increases in IMA were observed in the former (P<0.05).

Conclusions

Our study demonstrated that IMA is a new biomarker available for assessing oxidative stress in PCAG. Oxidative stress is an important risk factor in the development of primary angle-closure glaucoma. Increased levels of oxidative stress products may be associated with primary angle-closure glaucoma.  相似文献   

17.

Background

To investigate the cause/s of muscle fatigue experienced during a half-iron distance triathlon.

Methodology/Principal Findings

We recruited 25 trained triathletes (36±7 yr; 75.1±9.8 kg) for the study. Before and just after the race, jump height and leg muscle power output were measured during a countermovement jump on a force platform to determine leg muscle fatigue. Body weight, handgrip maximal force and blood and urine samples were also obtained before and after the race. Blood myoglobin and creatine kinase concentrations were determined as markers of muscle damage.

Results

Jump height (from 30.3±5.0 to 23.4±6.4 cm; P<0.05) and leg power output (from 25.6±2.9 to 20.7±4.6 W · kg−1; P<0.05) were significantly reduced after the race. However, handgrip maximal force was unaffected by the race (430±59 to 430±62 N). Mean dehydration after the race was 2.3±1.2% with high inter-individual variability in the responses. Blood myoglobin and creatine kinase concentration increased to 516±248 µg · L−1 and 442±204 U · L−1, respectively (P<0.05) after the race. Pre- to post-race jump change did not correlate with dehydration (r = 0.16; P>0.05) but significantly correlated with myoglobin concentration (r = 0.65; P<0.001) and creatine kinase concentration (r = 0.54; P<0.001).

Conclusions/significance

During a half-iron distance triathlon, the capacity of leg muscles to produce force was notably diminished while arm muscle force output remained unaffected. Leg muscle fatigue was correlated with blood markers of muscle damage suggesting that muscle breakdown is one of the most relevant sources of muscle fatigue during a triathlon.  相似文献   

18.
Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14C-labelled glucose and 3H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve local PO2, minimising regions of hypoxia and hence maximising the area of myocardium able to preserve cardiac output following maternal hypoxia.  相似文献   

19.
The molecular mechanisms that initiate the inflammatory response in heatstroke and their relation with tissue injury and lethality are not fully elucidated. We examined whether endogenous ligands released by damaged/stressed cells such as high-mobility group box 1 (HMGB1) signaling through Toll-like receptor 4 (TLR4) may play a pathogenic role in heatstroke. Mutant TLR4-defective (C3H/HeJ) and wild type (C3H/HeOuJ) mice were subjected to heat stress in an environmental chamber pre-warmed at 43.5°C until their core temperature reached 42.7°C, which was taken as the onset of heatstroke. The animals were then allowed to recover passively at ambient temperature. A sham-heated group served as a control. Mutant mice displayed more histological liver damage and higher mortality compared with wild type mice (73% vs. 27%, respectively, P<0.001). Compared to wild type mice, mutant mice exhibited earlier plasma release of markers of systemic inflammation such as HMGB1 (206±105 vs. 63±21 ng/ml; P = 0.0018 and 209±100 vs. 46±32 ng/ml; P<0.0001), IL-6 (144±40 vs. 46±20 pg/ml; P<0.001 and 184±21 vs. 84±54 pg/ml; P = 0.04), and IL-1β (27±4 vs. 1.7±2.3 pg/ml; P<0.0001 at 1 hour). Both strains of mice displayed early release of HMGB1 into the circulation upstream of IL-1β and IL-6 responses which remained elevated up to 24 h. Specific inhibition of HMGB1 activity with DNA-binding A Box (600 µg/mouse) protected the mutant mice against the lethal effect of heat stress (60% A Box vs. 18% GST protein, P = 0.04). These findings suggest a protective role for the TLR4 in the host response to severe heat stress. They also suggest that HMGB1 is an early mediator of inflammation, tissue injury and lethality in heatstroke in the presence of defective TLR4 signaling.  相似文献   

20.
Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive ‘PI 538976’ and salt-tolerant ‘Overdrive’) were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for ‘Overdrive’ stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in ‘Overdrive’ (P<0.01) and ‘PI 538976’ (P<0.05) under salt stress. ‘Overdrive’ had higher CO2 assimilation and Fv/Fm than ‘PI 538976’. Intercellular CO2 concentration, however, was higher in ‘PI 538976’ treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in ‘Overdrive’ and ‘PI 538976’ leaves and in ‘PI 538976’ stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r2 = 0.83, P<0.01) and turf quality (r2 = 0.88, P<0.01) in salt-tolerant ‘Overdrive’, however, the opposite trend for salt-sensitive ‘PI 538976’ (r2 = 0.71, P<0.05 for RGR; r2 = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in ‘Overdrive’ than ‘PI 538976’. A higher level of SPS and SS expression in leaves was found in ‘PI 538976’ relative to ‘Overdrive’. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号