首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural genome editing from a biocommunicative perspective is the competent agent-driven generation and integration of meaningful nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing integrates both natural editing of genetic code and epigenetic marking that determines genetic reading patterns. As agents that edit genetic code and epigenetically mark genomic structures, viral and subviral agents have been suggested because they may be evolutionarily older than cellular life. This hypothesis that viruses and viral-like agents edit genetic code is developed according to three well investigated examples that represent key evolutionary inventions in which non-lytic viral swarms act symbiotically in a persistent lifestyle within cellular host genomes: origin of eukaryotic nucleus, adaptive immunity, placental mammals. Additionally an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on the genetic code. Most of these RNA agents such as transposons, retroposons and small non-coding RNAs act consortially and are remnants of persistent viral infections that now act as co-opted adaptations in cellular key processes.  相似文献   

2.
Low Nucleotide Diversity in Man   总被引:49,自引:0,他引:49       下载免费PDF全文
W. H. Li  L. A. Sadler 《Genetics》1991,129(2):513-523
The nucleotide diversity (pi) in humans is studied by using published cDNA and genomic sequences that have been carefully checked for sequencing accuracy. This measure of genetic variability is defined as the number of nucleotide differences per site between two randomly chosen sequences from a population. A total of more than 75,000 base pairs from 49 loci are compared. The DNA regions studied are the 5' and 3' untranslated regions and the amino acid coding regions. The coding regions are divided into nondegenerate sites (i.e., sites at which all possible changes are nonsynonymous), twofold degenerate sites (i.e., sites at each of which one of the three possible changes is synonymous) and fourfold degenerate sites (i.e., sites at which all three possible changes are synonymous). The pi values estimated are, respectively, 0.03 and 0.04% for the 5' and 3' UT regions, and 0.03, 0.06 and 0.11% for nondegenerate, twofold degenerate and fourfold degenerate sites. Since the highest pi value is only 0.11%, which is about one order of magnitude lower than those in Drosophila populations, the nucleotide diversity in humans is very low. The low diversity is probably due to a relatively small long-term effective population size rather than any severe bottleneck during human evolution.  相似文献   

3.
We have checked the utility of DNA barcoding for species identification of nymphalid butterflies from Western Ghats of India by using 650 bp sequence of mitochondrial gene cytochrome c oxidase subunit I. Distinct DNA barcoding gap (i.e. difference between intraspecies and interspecies nucleotide divergence), exists between species studied here. When our sequences were compared with the sequences of the conspecifics submitted from different geographic regions, nine cases of deep intraspecies nucleotide divergences were observed. In spite of this, NJ (Neighbour Joining) clustering analysis successfully discriminated all species. Observed cases of deep intraspecies nucleotide divergences certainly warrant further study.  相似文献   

4.
Unbiased estimation of evolutionary distance between nucleotide sequences   总被引:7,自引:2,他引:5  
A new algorithm for estimating the number of nucleotide substitutions per site (i.e., the evolutionary distance) between two nucleotide sequences is presented. This algorithm can be applied to many estimation methods, such as Jukes and Cantor's method, Kimura's transition/transversion method, and Tajima and Nei's method. Unlike ordinary methods, this algorithm is always applicable. Numerical computations and computer simulations indicate that this algorithm gives an almost unbiased estimate of the evolutionary distance, unless the evolutionary distance is very large. This algorithm should be useful especially when we analyze short nucleotide sequences. It can also be applied to amino acid sequences, for estimating the number of amino acid replacements.   相似文献   

5.
We characterized the complete nucleic and amino acid sequences of the Plasmodium inui circumsporozoite protein (Pincsp) gene and analyzed nucleotide diversity across the entire Pincsp gene by using 7 field isolates and strains Taiwan I and II obtained from Formosan macaques (Macaca cyclopis) in Taiwan. The length of the circumsporozoite protein ( CSP ) gene ranged from 1077 to 1125 bp. Size polymorphisms were due to variations in the number of tandem repeat units. The non-repetitive (NR) region exhibited high homology (99.1 ~ 100 and 98.7 ~ 100% at the nucleotide and amino acid levels, respectively) and was conserved among the variants (nucleotide diversities, π, of the 5'NR and 3'NR regions were 0.00364 and 0.00392, respectively). In the central repetitive (CR) region, we decomposed the sequences into 2 kinds of repeating amino acid motifs, i.e., a repeat unit R1, PA(P/A)(P/A)A(E)GG (n = 11-13), and a following repeat unit R2: P(A/G)(A/P/G)(P/Q)AQ(N/K) (n = 9-10). Analyzing these repeat sequences showed evidence of 3 genetic mechanisms for generating variations in the repeats of the Pincsp gene, i.e., point mutation, insertion, and recombination. These findings suggest that polymorphisms in the Pincsp gene are essentially limited to the CR region, which showed much greater variability in terms of length, number of repeats, and sequence.  相似文献   

6.
Herein, we evaluated the concordance of population inferences and conclusions resulting from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleotide sequences) versus complete mitogenome sequences for 53 bobwhites representing six ecoregions across TX and OK (USA). Median joining (MJ) haplotype networks demonstrated that analyses performed using small mitochondrial fragments were insufficient for estimating the true (i.e., complete) mitogenome haplotype structure, corresponding levels of divergence, and maternal population history of our samples. Notably, discordant demographic inferences were observed when mismatch distributions of partial (i.e., partial D-Loop) versus complete mitogenome sequences were compared, with the reduction in mitochondrial genomic information content observed to encourage spurious inferences in our samples. A probabilistic approach to variant prediction for the complete bobwhite mitogenomes revealed 344 segregating sites corresponding to 347 total mutations, including 49 putative nonsynonymous single nucleotide variants (SNVs) distributed across 12 protein coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two divergent maternal lineages (d XY = 0.00731; F ST = 0.849; P < 0.05), thereby supporting the potential for two putative subspecies. However, the diverged lineage (n = 103 variants) almost exclusively involved bobwhites geographically classified as Colinus virginianus texanus, which is discordant with the expectations of previous geographic subspecies designations. Tests of adaptive evolution for functional divergence (MKT), frequency distribution tests (D, F S) and phylogenetic analyses (RAxML) provide no evidence for positive selection or hybridization with the sympatric scaled quail (Callipepla squamata) as being explanatory factors for the two bobwhite maternal lineages observed. Instead, our analyses support the supposition that two diverged maternal lineages have survived from pre-expansion to post-expansion population(s), with the segregation of some slightly deleterious nonsynonymous mutations.  相似文献   

7.
Matrix program to analyze primary structure homology   总被引:14,自引:6,他引:8       下载免费PDF全文
A FORTRAN program to analyze homology of letter strings (nucleotide or amino acid sequences) and to display the result in the form of a dot matrix is presented. The program is generally usable, user-friendly and has a number of options (filtering, "fudging," i.e., consideration of groups of homologous residues, and screening, i.e., display of only particular groups of residues) which greatly potentiate its analytical power.  相似文献   

8.
The biological activity of several deletion mutants of simian virus 40, cloned in pBR322, was determined. Three functions of the simian virus 40 A gene were studied: (i) the ability to express T antigen; (ii) the ability to induce cell DNA replication; and (iii) the ability to reactivate silent rRNA genes in hybrid cells. Recombinant plasmid DNA was introduced into cells by manual microinjection or by transfection. The results (together with previous reports) indicate that the critical sequences for these three functions are located separately on the simian virus 40 A gene, as follows: (i) the sequences necessary for the detection of the common antigenic determinant of T antigen extend from nucleotide 4147 to nucleotide 4001 (map units 0.45 to 0.42); (ii) the sequences critical for the stimulation of cell DNA synthesis extend from nucleotide 4327 to nucleotide 4001 (map units 0.49 to 0.42); and (iii) those critical for the reactivation of rRNA genes extend approximately from nucleotide 3827 to nucleotide 3526 (map units 0.39 to 0.33).  相似文献   

9.
S C Ng  M Behm    M Bina 《Journal of virology》1985,54(2):646-649
The segment of simian virus 40 (SV40) genome which is recognized as the BC domain encodes for the COOH-terminal end of the SV40 major capsid protein VP1. Mutations in this domain lead to the synthesis of a thermosensitive VP1 which fails to assemble mature SV40 at the nonpermissive temperature. We determined the DNA sequences of eight BC mutants and compared them with the DNA sequences of wild-type SV40, polyomavirus, and BK virus. We found that BC11 and BC223 mutations result from changes in nucleotide residues 2367 (A to C) and 2084 (C to T), respectively. The others (i.e., BC208, BC214, BC216, BC217, BC248, and BC274) share the same point mutation at nucleotide 2354 (C to T). These mutations resulted in the following changes: Lys to Thr, His to Tyr, and Pro to Ser at VP1 amino acid residues 290, 196, and 286, respectively.  相似文献   

10.
11.
12.
Patrice Gonzalez  G  rard Barroso  Jacques Labar  re 《Gene》1998,220(1-2):45-53
The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527 aa (58 377 Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division.  相似文献   

13.
A number of fungal lineages, notably N. crassa, have evolved a novel mechanism of processing genomic duplication events known as repeat-induced point (RIP) mutation. This mechanism appears, on the one hand, to act as a conservative genomic safeguard, by introducing stop codons into duplicated nucleotide sequences, thereby preempting consequences such as dosage effects. However, it also typically performs further nonsynonymous (i.e., amino acid-changing) nucleotide substitutions, the significance of which is unclear. We explore here the possibility that RIP-mutated genes which evade silencing may have some microevolutionary impact on functional sequences. Our approach focuses on structurally important hydrophobic/polar (HP) amino-acid substitutions effected by RIP. We exploit a simple generic protein folding model to predict the associated emergence of increased protein-structural stability and variance within a large population.  相似文献   

14.
Relative-rate tests have previously been developed to compare the substitution rates of two sequences or two groups of sequences. These tests usually assume that the process of nucleotide substitution is stationary and the same for all lineages, i.e., uniform. In this study, we conducted simulations to assess the performance of the relative-rate tests when the molecular-clock (MC) hypothesis is true (i.e., there is no rate difference between lineages), but the stationarity and uniformity assumptions are violated. Kimura's and bias-corrected LogDet distances were used. We found that the computation of the variances and covariances of LogDet distances had to be modified, because the constraint that the sum of the frequencies of the 16 nucleotide pair types is equal to 1 must be imposed. Comparison of the rates of two single sequences (Wu and Li's test) or two groups of sequences (Li and Bousquet's test) gave similar results. When the sequences are long (> or = 500 nt), the test based on LogDet distances and their appropriate variances and covariances is appropriate even when the substitution process is not stationary and/or not uniform. That is, at the 5% significance level, the test rejects the MC hypothesis in about 5% of the simulation replicates. In contrast, if the sequences are short (< or = 200 bases) and highly divergent, the LogDet test is very conservative due to overestimation of the variances of the distances. When the uniformity assumption is violated, the relative-rate test based on Kimura's distances can be severely misleading because of differences in base composition between sequences. However, if the uniformity assumption held and so the base frequencies remained similar among sequences, the rate of rejection turned out to be close to 5%, especially with short sequences. Under such conditions, the test using Kimura's distances performs better than the LogDet test. The reason seems to be that these distances are less affected by a reduction in the number of sites than the LogDet distances because they depend on only two parameters.  相似文献   

15.
The sequence of molecular clones of the genome of MVM(i), a lymphotropic variant of minute virus of mice, was determined and compared with that of MVM(p), the fibrotropic prototype strain. At the nucleotide level there are 163 base changes: 129 transitions and 34 transversions. Most nucleotide changes are silent, with only 27 amino acids changes predicted, of which 22 are conservative. Notable differences between the MVM(i) and MVM(p) genomes which may account for the cell specificities of these viruses occur within the 3' nontranslated regions. The differences discussed include the absence of a 65-base-pair direct in MVM(i), the presence of only two polyadenylation sites in MVM(i) compared with four in MVM(p), and sequences that bear a resemblance to enhancer sequences. Also included in this paper is an important correction to the MVM(p) sequence (C.R. Astell, M. Thomson, M. Merchlinsky, and D. C. Ward, Nucleic Acids Res. 11:999-1018, 1983).  相似文献   

16.
A simple model is put forward to explain the long-known three-base periodicity in coding DNA. We propose the concept of same-phase triplet clustering, i.e. a condition wherein a triplet appears several times in one phase without interruption by the two other possible phases. For instance, in the sequence (i): NTT_GNN_NTT_GNN_NTT_GNN_NNN_NTT_GNN (where N is any nucleotide but combinations producing TTG are excluded) there would be clustering of same-phase TTG because this triplet appears uninterruptedly in phase 2. In contrast, in the sequence (ii): TTG_NTT_GNN_NNT_TGN_NNN_NTT_GNN there is no same-phase clustering because neighboring TTGs are all in different phases. Observe also that in sequence (i) TTG triplets are separated by 3, 3 and 6 nucleotides (3n distances), while in sequence (ii) they are separated by 1, 4 and 5 nucleotides (non-3n distances). In this work, we demonstrate that in coding DNA the 3n distances generated by (i)-type sequences proportionally outnumber the non-3n distances generated by (ii)-type sequences, this condition would be the basis of three-base periodicity. Randomized sequences had (i)- and (ii)-type sequences too but clustering was statistically different. To prove our model we generated (i)-type sequences in a randomized sequence by inducing clustering of same-phase triplets. In agreement with the model this sequence displayed three-base periodicity. Furthermore, two- and four-base periodicities could also be induced by artificially inducing clustering of duplets and tetraplets.  相似文献   

17.
18.
An analysis of the cytochrome P450 3A subfamily (CYP3A) was undertaken in order to define relationships across species among subfamily members. Some members were excluded due to incomplete sequences, while others were held in abeyance because of their almost complete homology. This is the first publication of five chimpanzee CYP3A genes-CYP3A4, CYP3A5, CYP3A7, CYP3A43, and CYP3A67. This project utilized two approaches for characterizing possible relationships-phylogenetic analysis and genomic structure. For the phylogenetic analysis, both nucleotide and amino acid sequences were aligned in silico using the CLUSTAL algorithm, and then visually inspected for accuracy. Three different computer software packages were utilized: MEGA 2.1, TREECON 1.3b, and PHYLIP 3.5. Multiple methods were used: neighbor-joining (NJ), minimum evolution (ME), maximum parsimony (MP), and maximum likelihood (ML). The resulting topologies were compared against each other to define the consensus topology. In addition, the chimpanzee, human, mouse, and rat genome databases were searched for intron/exon information pertaining to the included genes. Both methods suggest the same conclusion, defining orthologs is plausible between similar species (i.e., mouse and rat), but is less useful between species of different orders (i.e., primate and rodent) or classes (i.e., mammal and avian).  相似文献   

19.
Merling A  Sagaydakova N  Haran TE 《Biochemistry》2003,42(17):4978-4984
It is well-known, but little understood, that the nucleotide sequences between phased A(4-6)-tracts (at 10-11 bp intervals) have only a slight effect on overall curvature. To explore this phenomenon, we have examined the gel-migration properties of sequences containing both A-tracts as well as G-tracts (i.e., sequences of the form G(n)C(m) or C(n)G(m), n + m > 4) in various relative positioning. We show that the composite bend of these sequences depends on their relative arrangement. When G-tracts are placed between two A-tracts, such that both tracts are repeated in phase to themselves (e.g., G(5)A(6)G(5)A(5)), or adjacent to the 3'-side of A-tracts (e.g., A(6)G(5)N(10)), they have minimal influence on the extent of bending of the composite sequence. When G-tracts are placed one helical repeat away from A-tracts (e.g., G(5)N(5)A(6)N(6)), or are adjacent only to the 5'-side of A-tracts (e.g., G(5)A(6)N(10)) their influence on the composite bend is larger. The differential behavior of AG- versus GA-tracts means that A-tracts influence their flanking sequences in a polar manner. Whereas they suppress, or make constant, the intrinsic bending characteristics of any sequence placed immediately 3' to them (and hence by definition any sequence placed between two phased A-tracts), sequences adjoining them on their 5'-side are free to modulate the overall curvature. We interpret these results as evidence for the dominant nature of the unique and nonuniform structure adopted by tracts of four adenines or more. The effects of A-tracts extend at least five base pairs into the adjoining 3' region. This is further evidence for the complexity of DNA structure and the inadequacy of simple nearest-neighbor models to explain all its manifestations.  相似文献   

20.
The nucleotide sequences of the D-loop region and its flanking genes of the mitochondrial DNA (mtDNA) from Japanese pond frogs were determined by the methods of PCR, cloning, and sequencing. The frogs belonged to two species, one subspecies, and one local race. The gene arrangements adjacent to the D-loop region were analyzed. The frogs shared a unique mitochondrial gene order that was found in Rana catesbeiana; i.e., cyt b--D-loop region--tRNA(Leu(CUN))--tRNA(Thr)--tRNA(Pro)--tRNA(Phe)--12S rRNA. The arrangements of the three tRNA genes of these frogs were different from those of X. laevis, a species which has the same overall structure as in mammals. Highly repetitive sequences with repeat units (16-bp or 17-bp sequence specific for each taxon) were found in the D-loop region. The length of repetitive sequences varied from 0.6 kbp to 1.2 kbp, and caused the extensive size variation in mtDNA. Several short sequence elements such as putative TAS, OH, CSB-1, and CSB-2 were found in the D-loop region of these frogs. The sequences of these short regulatory elements were conserved in R. catesbeiana, X. laevis, and also in human. The comparison of sequence divergences of the D-loop region and its adjacent genes among various taxa revealed that the rates of nucleotide substitutions depend on genes. The nucleotide sequences of the 3'-side segment of the D-loop region were the most variable among taxa, whereas those of the tRNA and 12S rRNA genes were the most conservative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号