首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ciliary neurotrophic factor (CNTF) protects photoreceptors and regulates their phototransduction machinery, but little is known about CNTF's effects on retinal pigment epithelial (RPE) physiology. Therefore, we determined the expression and localization of CNTF receptors and the physiological consequence of their activation in primary cultures of human fetal RPE (hfRPE). Cultured hfRPE express CNTF, CT1, and OsM and their receptors, including CNTFRα, LIFRβ, gp130, and OsMRβ, all localized mainly at the apical membrane. Exogenous CNTF, CT1, or OsM induces STAT3 phosphorylation, and OsM also induces the phosphorylation of ERK1/2 (p44/42 MAP kinase). CNTF increases RPE survivability, but not rates of phagocytosis. CNTF increases secretion of NT3 to the apical bath and decreases that of VEGF, IL8, and TGFβ2. It also significantly increases fluid absorption (J(V)) across intact monolayers of hfRPE by activating CFTR chloride channels at the basolateral membrane. CNTF induces profound changes in RPE cell biology, biochemistry, and physiology, including the increase in cell survival, polarized secretion of cytokines/neurotrophic factors, and the increase in steady-state fluid absorption mediated by JAK/STAT3 signaling. In vivo, these changes, taken together, could serve to regulate the microenvironment around the distal retinal/RPE/Bruch's membrane complex and provide protection against neurodegenerative disease.  相似文献   

2.

Background

Age-related macular degeneration (AMD) is a leading cause of legal blindness in the elderly in the industrialized word. While the immune system in the retina is likely to be important in AMD pathogenesis, the cell biology underlying the disease is incompletely understood. Clinical and basic science studies have implicated alterations in the retinal pigment epithelium (RPE) layer as a locus of early change. Also, retinal microglia, the resident immune cells of the retina, have been observed to translocate from their normal position in the inner retina to accumulate in the subretinal space close to the RPE layer in AMD eyes and in animal models of AMD.

Methodology/Principal Findings

In this study, we examined the effects of retinal microglia on RPE cells using 1) an in vitro model where activated retinal microglia are co-cultured with primary RPE cells, and 2) an in vivo mouse model where retinal microglia are transplanted into the subretinal space. We found that retinal microglia induced in RPE cells 1) changes in RPE structure and distribution, 2) increased expression and secretion of pro-inflammatory, chemotactic, and pro-angiogenic molecules, and 3) increased extent of in vivo choroidal neovascularization in the subretinal space.

Conclusions/Significance

These findings share similarities with important pathological features found in AMD and suggest the relevance of microglia-RPE interactions in AMD pathogenesis. We speculate that the migration of retinal microglia into the subretinal space in early stages of the disease induces significant changes in RPE cells that perpetuate further microglial accumulation, increase inflammation in the outer retina, and fosters an environment conducive for the formation of neovascular changes responsible for much of vision loss in advanced AMD.  相似文献   

3.
The retinal pigment epithelium (RPE) is separated from the photoreceptor outer segments by the subretinal space. While the actual volume of this space is minimal, the communication that occurs across this microenvironment is important to the visual process, and accumulating evidence suggests the purines ATP and adenosine contribute to this communication. P1 and P2 receptors are localized to membranes on both the photoreceptor outer segments and on the apical membrane of the RPE which border subretinal space. ATP is released across the apical membrane of the RPE into this space in response to various triggers including glutamate and chemical ischemia. This ATP is dephosphorylated into adenosine by a series of ectoenzymes on the RPE apical membrane. Regulation of release and ectoenzyme activity in response to light-sensitive signals can alter the balance of purines in subretinal space, and thus coordinate communication across subretinal space with the visual process.  相似文献   

4.
Bipolar assembly of caveolae in retinal pigment epithelium   总被引:1,自引:0,他引:1  
Caveolae and their associated structural proteins, the caveolins, are specialized plasmalemmal microdomains involved in endocytosis and compartmentalization of cell signaling. We examined the expression and distribution of caveolae and caveolins in retinal pigment epithelium (RPE), which plays key roles in retinal support, visual cycle, and acts as the main barrier between blood and retina. Electron microscopic observation of rat RPE, in situ primary cultures of rat and human RPE and a rat RPE cell line (RPE-J) demonstrated in all cases the presence of caveolae in both apical and basolateral domains of the plasma membrane. Caveolae were rare in RPE in situ but were frequent in primary RPE cultures and in RPE-J cells, which correlated with increased levels in the expression of caveolin-1 and -2. The bipolar distribution of caveolae in RPE is striking, as all other epithelial cells examined to date (liver, kidney, thyroid, and intestinal) assemble caveolae only at the basolateral side. This might be related to the nonpolar distribution of both caveolin-1 and 2 in RPE because caveolin-2 is basolateral and caveolin-1 nonpolar in other epithelial cells. The bipolar localization of plasmalemmal caveolae in RPE cells may reflect specialized roles in signaling and trafficking important for visual function. caveolin; raft microdomains; membrane traffic; normal rat kidney  相似文献   

5.
Our understanding of the morphogenesis of epithelial phenotypes has been greatly advanced by the use of in vitro cell culture systems. However, cell cultures often do not faithfully reconstitute many of the differentiated properties of the cell from which they are derived and cannot be used to examine complex physiologic interactions between adjacent tissues. This is particularly true of the retinal pigment epithelium (RPE). Many plasma membrane proteins, in vivo, exhibit a reversed polarity with respect to other epithelia, and RPE-derived cell lines seldom exhibit these same polarity properties. Furthermore, the interaction between the RPE cell and the neuorsensory retina, or the underlying blood supply, the choroid, is absent in cell culture. Most epithelia are difficult to isolate and study in vivo. The RPE is an exception to this. We have explored several aspects of RPE protein transport properties, vision-related physiology, and disease-related pathophysiology in the eye using in vivo gene transfer and electrophysiologic techniques. By injecting replication-defective adenoviruses into the subretinal space of rat eyes, we have been able to easily direct the expression of a test protein and follow its sorting and physiologic effects on RPE cells and adjacent tissues. Due to binding and internalization of adenoviral vectors to integrins found on the RPE apical plasma membrane, expression in a healthy eye is essentially confined to the RPE cell, even under control of a cytomegalovirus promotor. The use of varying amounts of adenoviral vector allows for determination of dose-responsive effects and the comparison of multiple mutants of a protein. In addition, there are substantial savings with respect to time and money in comparison to standard transgenic approaches.  相似文献   

6.
Every day, shortly after light onset, photoreceptor cells shed approximately a tenth of their outer segment. The adjacent retinal pigment epithelial (RPE) cells phagocytize and digest shed photoreceptor outer segment, which provides a rich source of fatty acids that could be utilized as an energy substrate. From a microarray analysis, we found that RPE cells express particularly high levels of the mitochondrial HMG-CoA synthase 2 (Hmgcs2) compared with all other tissues (except the liver and colon), leading to the hypothesis that RPE cells, like hepatocytes, can produce β-hydroxybutyrate (β-HB) from fatty acids. Using primary human fetal RPE (hfRPE) cells cultured on Transwell filters with separate apical and basal chambers, we demonstrate that hfRPE cells can metabolize palmitate, a saturated fatty acid that constitutes ≈15% of all lipids in the photoreceptor outer segment, to produce β-HB. Importantly, we found that hfRPE cells preferentially release β-HB into the apical chamber and that this process is mediated primarily by monocarboxylate transporter isoform 1 (MCT1). Using a GC-MS analysis of 13C-labeled metabolites, we showed that retinal cells can take up and metabolize 13C-labeled β-HB into various TCA cycle intermediates and amino acids. Collectively, our data support a novel mechanism of RPE-retina metabolic coupling in which RPE cells metabolize fatty acids to produce β-HB, which is transported to the retina for use as a metabolic substrate.  相似文献   

7.
8.
Intracellular recordings show that light-evoked hyperpolarizations of the apical and basal membranes of the cat retinal pigment epithelium (RPE) are altered by mild hypoxia. RPE cells, like glia, have a high K+ conductance, and measurements with K+-sensitive microelectrodes show that the hypoxic changes in the RPE cell are largely the result of changes in extracellular [K+] in the subretinal space [( K+]o) rather than direct effects on RPE cells. During hypoxia, light-evoked [K+]o responses and membrane responses have longer times to peak, slower and less complete recovery during illumination, and larger amplitudes. In addition to the effects on light-evoked responses, hypoxia causes a depolarization of first the apical and then the basal membranes of RPE cells under dark-adapted conditions. The basal depolarization is accompanied by a decrease in basal membrane resistance. These depolarizations appear to be caused by a rapid increase in [K+]o at the onset of hypoxia, which is maximal in dark adaptation, and smaller if the retina is subjected to maintained illumination. All of the effects are graded with the severity of hypoxia and can be observed at arterial oxygen tensions as high as 65 mmHg, although the threshold may be even higher. We argue that the origin of hypoxic [K+]o changes is probably an inhibition of the photoreceptors' Na+/K+ pump. This work then suggests that photoreceptors are more sensitive to hypoxia than previously believed, and that the high oxygen tension normally provided by the choroidal circulation is necessary for normal photoreceptor function.  相似文献   

9.
Fundus autofluorescence (AF) imaging by confocal scanning laser ophthalmoscopy has been widely used by ophthalmologists in the diagnosis/monitoring of various retinal disorders. It is believed that fundus AF is derived from lipofuscin in retinal pigment epithelial (RPE) cells; however, direct clinicopathological correlation has not been possible in humans. We examined fundus AF by confocal scanning laser ophthalmoscopy and confocal microscopy in normal C57BL/6 mice of different ages. Increasingly strong AF signals were observed with age in the neuroretina and subretinal/RPE layer by confocal scanning laser ophthalmoscopy. Unlike fundus AF detected in normal human subjects, mouse fundus AF appeared as discrete foci distributed throughout the retina. Most of the AF signals in the neuroretina were distributed around retinal vessels. Confocal microscopy of retinal and choroid/RPE flat mounts demonstrated that most of the AF signals were derived from Iba-1+ perivascular and subretinal microglia. An age-dependent accumulation of Iba-1+ microglia at the subretinal space was observed. Lipofuscin granules were detected in large numbers in subretinal microglia by electron microscopy. The number of AF+ microglia and the amount of AF granules/cell increased with age. AF granules/lipofuscin were also observed in RPE cells in mice older than 12 months, but the number of AF+ RPE cells was very low (1.48 mm(-2) and 5.02 mm(-2) for 12 and 24 months, respectively) compared to the number of AF+ microglial cells (20.63 mm(-2) and 76.36 mm(-2) for 6 and 24 months, respectively). The fluorescence emission fingerprints of AF granules in subretinal microglia were the same as those in RPE cells. Our observation suggests that perivascular and subretinal microglia are the main cells producing lipofuscin in normal aged mouse retina and are responsible for in vivo fundus AF. Microglia may play an important role in retinal aging and age-related retinal diseases.  相似文献   

10.
The retinal pigment epithelium (RPE) faces the photoreceptor outer segments and regulates the composition of the interstitial subretinal space. ATP enhances fluid movement from the subretinal space across the RPE. RPE cells can themselves release ATP, but the mechanisms and polarity of this release are unknown. The RPE expresses the cystic fibrosis transmembrane conductance regulator (CFTR), and CFTR is associated with ATP release in other epithelial cells. However, an increasing number of reports have suggested that the exocytotic pathway contributes to release. In the present study, we examined the involvement of CFTR and the vesicular pathway in ATP release from RPE cells. Release from cultured human ARPE-19 cells and across the apical membrane of fresh bovine RPE cells in an eyecup was studied. A cAMP cocktail to activate CFTR triggered ATP release from fresh and cultured RPE cells. Release from both RPE preparations was largely prevented by the broad-acting blocker glibenclamide and the specific thiazolidinone CFTR inhibitor CFTR-172. The block by CFTR-172 was enhanced by preincubation and prevented ATP release with 3.5 µM IC50. The rise in intracellular Ca2+ accompanying hypotonic challenge was prevented by CFTR-172. The vesicular transport inhibitor brefeldin A prevented ATP release after stimulation with both hypotonic and cAMP conditions, suggesting vesicular insertion was also involved. These results show an intimate involvement of CFTR in ATP release from RPE cells which can autostimulate receptors on the apical membrane to modify Ca2+ signaling. The requirement for both CFTR and vesicular transport pathways suggests vesicular insertion of CFTR may underlie the release of ATP. cystic fibrosis transmembrane conductance regulator; recycling endosomes; brefeldin A; autostimulation; retinal detachment  相似文献   

11.
The recent discovery and characterization of several proteins that purify with endogenous, bound retinoid have given rise to the suggestion that these proteins, which are abundant in retina, perform a role in transport and function of vitamin A. Immunocytochemical techniques were used to localize two retinoid-binding proteins in the retina of four species. Antisera to cellular retinal-binding protein (CRALBP) and an interphotoreceptor retinoid-binding protein (IRBP) were obtained from rabbits immunized with antigens purified from bovine retina. Antibodies from each antiserum reacted with a single component in retinal homogenates and supernatants which corresponded to the molecular weight and charge of the respective antigen (non-SDS and SDS PAGE, electrophoretic transfer to nitrocellulose, immunochemical staining). Immunocytochemistry controls were antibodies from nonimmune serum and antibodies absorbed with purified antigen. Antigens were localized on frozen-sectioned bovine, rat, monkey, and human retina using immunofluorescence and the peroxidase-antiperoxidase technique. Specific staining with anti-IRBP was found in the space that surrounds photoreceptor outer segments, with heaviest labeling in a line corresponding to the retinal pigment epithelium (RPE) apical surface. Cone outer segments were positive. Staining with anti-CRALBP was found in two cell types in all species: the RPE and the Muller glial cell. Within the RPE, labeling filled the cytoplasm and was heaviest apically, with negative nuclei. Labeling of Muller cells produced Golgi- like silhouettes with intense staining of all cytoplasmic compartments. Staining of the external limiting membrane was heavy, with labeled microvilli projecting into the interphotoreceptor space. Localization of IRBP to this space bordered by three cell types (RPE, photoreceptor, and Muller) is consistent with its proposed role in transport of retinoids among cells. Localization of CRALBP in RPE corroborates previous biochemical studies; its presence in the Muller cell suggests that this glial cell may play a hitherto unsuspected role in vitamin A metabolism in retina.  相似文献   

12.
The differential polarized distribution of the reduced- folate transporter (RFT-1) and folate receptor alpha (FRalpha), the two proteins involved in the transport of folate, has been characterized in normal mouse retinal pigment epithelium (RPE) and in cultured human RPE cells. RPE cells mediate the vectorial transfer of nutrients from choroidal blood to neural retina. Whereas FRalpha is known to be present in many cell types of the neural retina, in situ hybridization analysis in the present study demonstrated that RFT-1 is present only in RPE. Laser-scanning confocal microscopy using antibodies specific for RFT-1 demonstrated an apical distribution of this protein in cultured human and intact mouse RPE, which contrasts with the basolateral distribution of FRalpha in these cells. The expression of RFT-1 in the RPE cell apical membrane was confirmed by functional studies with purified apical membrane vesicles from bovine RPE. These studies, done with N(5)-methyltetrahydrofolate (the predominant folate derivative in blood) and folate as substrates, have shown that RFT-1 functions in a Na(+)- and C1(-)-independent manner. The transporter is specific for folate and its analogs. A transmembrane H(+) gradient influences the transport function of this protein markedly; the transport mechanism is likely to be either folate/H(+) co-transport or folate/OH(-) exchange. Based on the differential polarization of FRalpha and RFT-1 in RPE, we suggest that these two proteins work in a concerted manner to bring about the vectorial transfer of folate across the RPE cell layer from the choroidal blood to the neural retina. This constitutes the first report of the differential polarization of the two folate transport proteins in any polarized epithelium.  相似文献   

13.
Age-related macular degeneration (AMD) is the leading cause of legal blindness in the western nations beyond 50 years of age. The most frequent cause for severe visual loss is the growth of neovascular membrances from the choroid into the subretinal space. This usually results in irreversible degeneration of the overlying retina. Surgical removal of the membrane is feasible, however, usually results in functional loss of apposing retinal photoreceptors since retinal pigment epithelial (RPE) cells are removed concurrently due to their tight adherence to the neovascular complex. Therefore, various attempts have been undertaken to fill the resulting RPE cell defect with either heterologous or autologous RPE cell transplants. So far cell survival, function and subsequent visual function has been disappointing. To minimize trauma and resulting dedifferentiation harvesting in the eye and transplantation in whole sheets and without temporary removal from the eyes would be desirable. This may be achieved by isolating grafts consisting of choroid, Bruch's membrance and RPE cells from the peripheral retina and transplantation of this graft under the neurosensory retina after removal of the choroidal neovascularization. However, the choroidal component of such a graft would be expected to interfere with diffusion of metabolites to and from the retina. Therefore, outcome would be expected to be better if the choroidal tissue would be removed before translocation. In preclinical experiments we used a 308 nm UV AIDA excimer laser to microablate choroidal tissue from such a graft in human donor eyes.  相似文献   

14.
探讨利用视网膜色素上皮 (retinalpigmentepithelium ,RPE)细胞移植介导目的基因转移至视网膜的可行性。人的RPE细胞在体外经携带绿色荧光蛋白 (greenfluorescentprotein ,GFP)基因的逆转录病毒感染及G4 1 8筛选后 ,手术显微镜直视下经睫状体平坦部注射到兔眼视网膜下间隙。术后通过活体荧光眼底照相 ,荧光显微镜、共聚焦显微镜及透射电镜等观察眼球铺片及切片 ,发现经 gfp基因修饰的人RPE细胞在兔眼视网膜下间隙可存活一年以上。移植的RPE gfp细胞不仅仅局限于移植部位 ,大多扩散到超过 2~ 3个象限的眼底 ,镶嵌于宿主RPE细胞之间或呈单层排列在宿主色素上皮与神经视网膜之间 ,并持续高水平表达GFP。移植后早期玻璃体内每周注射免疫抑制剂普乐可复 (FK5 0 6 )可明显改善移植细胞的存活状态  相似文献   

15.
Retinas of 4-, 10-, and 20-year-old monkeys were studied by light microscopy, electron microscopy, and scanning electron microscopy. Sections from the midperipheral region of every retina were selected for comparison. Although no significant differences were found between 4- and 10-year-old retinas, four major changes were found in 20-year-old monkey retinas: (i) increased number of displaced photoreceptor cells (DPC), (ii) increased number of macrophages of different morphology in subretinal space, (iii) increase in pigment granules in retinal pigment epithelium (RPE) cells, and (iv) altered morphology of Muller cells. DPC included both rods and cones. Their location and morphology depended on the stage of their displacement. These cells were usually oval or rounded in shape and were found either among the outer segments of other photoreceptor cells, having stalks extending into the outer nuclear layer, or were located in the subretinal space and had no stalk. A narrow space around the DPC stalks, indicating a change in the intercellular connection between photoreceptor cells and Muller cells, was observed. Furthermore, the Muller cells related to DPC had shortened and markedly reduced microvilli. Two types of macrophages were found in the subretinal space of aged monkey retinas. One type was similar in morphology to RPE cells. Some of these cells were noticed detaching from RPE. Other types of macrophages were nonpigmented. The modifications in RPE were closely related to the changes in the associated neuroretina. The RPE cells in aged retina were devoid of microvilli or had a few thin microvilli. The pleomorphic pigment granules were dispersed throughout the cytoplasm. These cells varied in their size, shape, and surface features. These changes could significantly alter the retinal metabolic equilibrium and may be indicative of age related degenerative processes.  相似文献   

16.
We describe here a new retinal pigment epithelium (RPE) response, a delayed hyperpolarization of the RPE basal membrane, which is initiated by the light-evoked decrease of [K+]o in the subretinal space. This occurs in addition to an apical hyperpolarization previously described in cat (Steinberg et al., 1970; Schmidt and Steinberg, 1971) and in bullfrog (Oakley et al., 1977; Oakley, 1977). Intracellular and extracellular potentials and measurements of subretinal [K+]o were recorded from an in vitro preparation of neural retina-RPE-choroid from the lizard Gekko gekko in response to light. Extracellularly, the potential across the RPE, the transepithelial potential (TEP), first increased and then decreased during illumination. Whereas the light- evoked decrease in [K+]o predicted the increase in TEP, the subsequent decrease in TEP was greater than predicted by the reaccumulation of [K+]o. Intracellular RPE recordings showed that a delayed hyperpolarization generated at the RPE basal membrane produced the extra TEP decrease. At light offset, the opposite sequence of membrane potential changes occurred. RPE responses to changes in [K+]o were studied directly in the isolated gecko RPE-choroid. Decreasing [K+]o in the apical bathing solution produced first a hyperpolarization of the apical membrane, followed by a delayed hyperpolarization of the basal membrane, a sequence of membrane potential changes identical to those evoked by light. Increasing [K+]o produced the opposite sequence of membrane potential changes. In both preparations, the delayed basal membrane potentials were accompanied by changes in basal membrane conductance. The mechanism by which a change in extracellular [K+] outside the apical membrane leads to a polarization of the basal membrane remains to be determined.  相似文献   

17.
To investigate the degradation pathway of rod outer segments (ROS) in vivo, we injected gold-labeled ROS into the subretinal space of rabbits using a pars plana approach. Histology and electron microscopy performed on the specimens 72 hr after ROS injection revealed that the retina over the injection site was reattached, the retinal pigment epithelial (RPE) cells were intact, and gold granules were localized inside melanin granules and melanosomes. These results indicate that, in RPE, in vivo degradation of ROS is associated with melanosomes.  相似文献   

18.
To investigate the degradation pathway of rod outer segments (ROS) in vivo, we injected gold-labeled ROS into the subretinal space of rabbits using a pars plana approach. Histology and electron microscopy performed on the specimens 72 hr after ROS injection revealed that the retina over the injection site was reattached, the retinal pigment epithelial (RPE) cells were intact, and gold granules were localized inside melanin granules and melanosomes. These results indicate that, in RPE, in vivo degradation of ROS is associated with melanosomes.  相似文献   

19.
A primary function of cadherins is to regulate cell adhesion. Here, we demonstrate a broader function of cadherins in the differentiation of specialized epithelial cell phenotypes. In situ, the rat retinal pigment epithelium (RPE) forms cell-cell contacts within its monolayer, and at the apical membrane with the neural retina; Na+, K(+)-ATPase and the membrane cytoskeleton are restricted to the apical membrane. In vitro, RPE cells (RPE-J cell line) express an endogenous cadherin, form adherens junctions and a tight monolayer, but Na+,K(+)-ATPase is localized to both apical and basal-lateral membranes. Expression of E- cadherin in RPE-J cells results in restriction and accumulation of both Na+,K(+)-ATPase and the membrane cytoskeleton at the lateral membrane; these changes correlate with the synthesis of a different ankyrin isoform. In contrast to both RPE in situ and RPE-J cells that do not form desmosomes, E-cadherin expression in RPE-J cells induces accumulation of desmoglein mRNA, and assembly of desmosome-keratin complexes at cell-cell contacts. These results demonstrate that cadherins directly affect epithelial cell phenotype by remodeling the distributions of constitutively expressed proteins and by induced accumulation of specific proteins, which together lead to the generation of structurally and functionally distinct epithelial cell types.  相似文献   

20.
Choroidal new vessel (CNV) excision may improve vision in patients with age-related macular degeneration (AMD) by eliminating the source of subretinal bleeding and scarring. Visual recovery after CNV excision is usually poor in AMD patients, probably because of removal of the associated retinal pigment epithelium (RPE), coupled with the inability of native RPE at the edge of the dissection bed to resurface the iatrogenic RPE defect. Experiments using in vitro and in vivo RPE wound-healing models have provided insight into the factors that regulate RPE wound healing in situ.Wound-healing studies using aged submacular human Bruch's membrane in organ culture show that resurfacing of localized RPE defects is influenced by the depth of damage to Bruch's membrane as well as factors that are intrinsic to the aged RPE at the wound edge. The Bruch's membrane organ-culture paradigm provides a surface for RPE wound healing that closely resembles the surface on which RPE must grow after CNV excision in AMD patients. An understanding of the factors that influence RPE wound healing might lead to treatments that stimulate RPE resurfacing and improve visual outcome after CNV excision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号