首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genomic selection relaxes the requirement of traditional selection tools to have phenotypic measurements on close relatives of all selection candidates. This opens up possibilities to select for traits that are difficult or expensive to measure. The objectives of this paper were to predict accuracy of and response to genomic selection for a new trait, considering that only a cow reference population of moderate size was available for the new trait, and that selection simultaneously targeted an index and this new trait. Accuracy for and response to selection were deterministically evaluated for three different breeding goals. Single trait selection for the new trait based only on a limited cow reference population of up to 10 000 cows, showed that maximum genetic responses of 0.20 and 0.28 genetic standard deviation (s.d.) per year can be achieved for traits with a heritability of 0.05 and 0.30, respectively. Adding information from the index based on a reference population of 5000 bulls, and assuming a genetic correlation of 0.5, increased genetic response for both heritability levels by up to 0.14 genetic s.d. per year. The scenario with simultaneous selection for the new trait and the index, yielded a substantially lower response for the new trait, especially when the genetic correlation with the index was negative. Despite the lower response for the index, whenever the new trait had considerable economic value, including the cow reference population considerably improved the genetic response for the new trait. For scenarios with a zero or negative genetic correlation with the index and equal economic value for the index and the new trait, a reference population of 2000 cows increased genetic response for the new trait with at least 0.10 and 0.20 genetic s.d. per year, for heritability levels of 0.05 and 0.30, respectively. We conclude that for new traits with a very small or positive genetic correlation with the index, and a high positive economic value, considerable genetic response can already be achieved based on a cow reference population with only 2000 records, even when the reliability of individual genomic breeding values is much lower than currently accepted in dairy cattle breeding programs. New traits may generally have a negative genetic correlation with the index and a small positive economic value. For such new traits, cow reference populations of at least 10 000 cows may be required to achieve acceptable levels of genetic response for the new trait and for the whole breeding goal.  相似文献   

2.
Estimating evolutionary parameters when viability selection is operating   总被引:2,自引:0,他引:2  
Some individuals die before a trait is measured or expressed (the invisible fraction), and some relevant traits are not measured in any individual (missing traits). This paper discusses how these concepts can be cast in terms of missing data problems from statistics. Using missing data theory, I show formally the conditions under which a valid evolutionary inference is possible when the invisible fraction and/or missing traits are ignored. These conditions are restrictive and unlikely to be met in even the most comprehensive long-term studies. When these conditions are not met, many selection and quantitative genetic parameters cannot be estimated accurately unless the missing data process is explicitly modelled. Surprisingly, this does not seem to have been attempted in evolutionary biology. In the case of the invisible fraction, viability selection and the missing data process are often intimately linked. In such cases, models used in survival analysis can be extended to provide a flexible and justified model of the missing data mechanism. Although missing traits pose a more difficult problem, important biological parameters can still be estimated without bias when appropriate techniques are used. This is in contrast to current methods which have large biases and poor precision. Generally, the quantitative genetic approach is shown to be superior to phenotypic studies of selection when invisible fractions or missing traits exist because part of the missing information can be recovered from relatives.  相似文献   

3.
A methodological framework was presented for deriving weightings to be applied in selection indexes to account for the impact genetic change in traits will have on greenhouse gas emissions intensities (EIs). Although the emission component of the breeding goal was defined as the ratio of total emissions relative to a weighted combination of farm outputs, the resulting trait-weighting factors can be applied as linear weightings in a way that augments any existing breeding objective before consideration of EI. Calculus was used to define the parameters and assumptions required to link each trait change to the expected changes in EI for an animal production system. Four key components were identified. The potential impact of the trait on relative numbers of emitting animals per breeding female first has a direct effect on emission output but, second, also has a dilution effect from the extra output associated with the extra animals. Third, each genetic trait can potentially change the amount of emissions generated per animal and, finally, the potential impact of the trait on product output is accounted for. Emission intensity weightings derived from this equation require further modifications to integrate them into an existing breeding objective. These include accounting for different timing and frequency of trait expressions as well as a weighting factor to determine the degree of selection emphasis that is diverted away from improving farm profitability in order to achieve gains in EI. The methodology was demonstrated using a simple application to dairy cattle breeding in Ireland to quantify gains in EI reduction from existing genetic trends in milk production as well as in fertility and survival traits. Most gains were identified as coming through the dilution effect of genetic increases in milk protein per cow, although gains from genetic improvements in survival by reducing emissions from herd replacements were also significant. Emission intensities in the Irish dairy industry were estimated to be reduced by ~5% in the last 10 years because of genetic trends in production, fertility and survival traits, and a further 15% reduction was projected over the next 15 years because of an observed acceleration of genetic trends.  相似文献   

4.
Using quantitative genetic theory, we develop predictions for the evolution of trade-offs in response to directional and correlational selection. We predict that directional selection favoring an increase in one trait in a trade-off will result in change in the intercept but not the slope of the trade-off function, with the mean value of the selected trait increasing and that of the correlated trait decreasing. Natural selection will generally favor an increase in some combination of trait values, which can be represented as directional selection on an index value. Such selection induces both directional and correlational selection on the component traits. Theory predicts that selection on an index value will also change the intercept but not the slope of the trade-off function but because of correlational selection, the direction of change in component traits may be in the same or opposite directions. We test these predictions using artificial selection on the well-established trade-off between fecundity and flight capability in the cricket, Gryllus firmus and compare the empirical results with a priori predictions made using genetic parameters from a separate half-sibling experiment. Our results support the predictions and illustrate the complexity of trade-off evolution when component traits are subject to both directional and correlational selection.  相似文献   

5.
Summary A theoretical comparison between two multiple-trait selection methods, index and tandem selection, after several generations of selection was carried out. An infinite number of loci determining the traits, directional and truncation selection, discrete generations and infinite population size were assumed. Under these assumptions, changes in genetic parameters over generations are due to linkage disequilibrium generated by selection. Changes continue for several generations until equilibrium is approached. Algebraic expressions for asymptotic responses from index selection can be derived if index weights are maintained constant across generations. Expressions at equilibrium for genetic parameters and responses are given for the index and its component traits. The loss in response by using initial index weights throughout all generations, instead of updating them to account for changes in genetic parameters, was analyzed. The benefit of using optimum weights was very small ranging from 0% to about 1.5% for all cases studied. Recurrence formulae to predict genetic parameters and responses at each generation of selection are given for both index and tandem selection. A comparison between expected response in the aggregate genotype at equilibrium from index and tandem selection is made considering two traits of economic importance. The results indicate that although index selection is more efficient for improving the aggregate breeding value, its relative efficiency with respect to tandem selection decreases after repeated cycles of selection. The reduction in relative efficiency is highest with the highest selection intensity and heritabilities and with negative correlations between the two traits. The advantage of index over tandem selection might be further reduced if changes in genetic parameters due to gene frequency changes produced by selection, random fluctuations due to the finite size of the population, and errors in estimation of parameters, were also considered.  相似文献   

6.
Estimates of the form and magnitude of natural selection based on phenotypic relationships between traits and fitness measures can be biased when environmental factors influence both relative fitness and phenotypic trait values. I quantified genetic variances and covariances, and estimated linear and quadratic selection coefficients, for seven traits of an annual plant grown in the field. For replicates of 50 paternal half-sib families, coefficients of selection were calculated both for individual phenotypic values of the traits and for half-sib family mean values. The potential for evolutionary response was supported by significant heritability and phenotypic directional selection for several traits but contradicted by the absence of significant genetic variation for fitness estimates and evidence of bias in phenotypic selection coefficients due to environmental covariance for at least two of the traits analysed. Only studies of a much wider range of organisms and traits will reveal the frequency and extent of such bias.  相似文献   

7.
Recent studies with Nile tilapia have shown divergent results regarding the possibility of selecting on morphometric measurements to promote indirect genetic gains in fillet yield (FY). The use of indirect selection for fillet traits is important as these traits are only measurable after harvesting. Random regression models are a powerful tool in association studies to identify the best time point to measure and select animals. Random regression models can also be applied in a multiple trait approach to analyze indirect response to selection, which would avoid the need to sacrifice candidate fish. Therefore, the aim of this study was to investigate the genetic relationships between several body measurements, weight and fillet traits throughout the growth period and to evaluate the possibility of indirect selection for fillet traits in Nile tilapia. Data were collected from 2042 fish and was divided into two subsets. The first subset was used to estimate genetic parameters, including the permanent environmental effect for BW and body measurements (8758 records for each body measurement, as each fish was individually weighed and measured a maximum of six times). The second subset (2042 records for each trait) was used to estimate genetic correlations and heritabilities, which enabled the calculation of correlated response efficiencies between body measurements and the fillet traits. Heritability estimates across ages ranged from 0.05 to 0.5 for height, 0.02 to 0.48 for corrected length (CL), 0.05 to 0.68 for width, 0.08 to 0.57 for fillet weight (FW) and 0.12 to 0.42 for FY. All genetic correlation estimates between body measurements and FW were positive and strong (0.64 to 0.98). The estimates of genetic correlation between body measurements and FY were positive (except for CL at some ages), but weak to moderate (−0.08 to 0.68). These estimates resulted in strong and favorable correlated response efficiencies for FW and positive, but moderate for FY. These results indicate the possibility of achieving indirect genetic gains for FW and by selecting for morphometric traits, but low efficiency for FY when compared with direct selection.  相似文献   

8.
Genetic information on molecular markers is increasingly being used in plant and animal improvement programmes particularly as indirect means to improve a metric trait by selection either on an individual basis or on the basis of an index incorporating such information. This paper examines the utility of an index of selection that not only combines phenotypic and molecular information on the trait under improvement but also combines similar information on one or more auxiliary traits. The accuracy of such a selection procedure has been theoretically studied for sufficiently large populations so that the effects of detected quantitative trait loci can be perfectly estimated. The theory is illustrated numerically by considering one auxiliary trait. It is shown that the use of an auxiliary trait improves the selection accuracy; and, hence, the relative efficiency of index selection compared to individual selection which is based on the same intensity of selection. This is particularly so for higher magnitudes of residual genetic correlation and environmental correlation having opposite signs, lower values of the proportion of genetic variation in the main trait associated with the markers, negligible proportion of genetic variation in the auxiliary trait associated with the markers, and lower values of the heritability of the main trait but higher values of the heritability of the auxiliary trait.  相似文献   

9.
Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson–Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date — repeatedly described as more evolutionarily stable than expected — so this skewness should be accounted for when investigating evolutionary dynamics in the wild.  相似文献   

10.
Interactions among conspecifics influence social evolution through two distinct but intimately related paths. First, they provide the opportunity for indirect genetic effects (IGEs), where genes expressed in one individual influence the expression of traits in others. Second, interactions can generate social selection when traits expressed in one individual influence the fitness of others. Here, we present a quantitative genetic model of multivariate trait evolution that integrates the effects of both IGEs and social selection, which have previously been modeled independently. We show that social selection affects evolutionary change whenever the breeding value of one individual covaries with the phenotype of its social partners. This covariance can be created by both relatedness and IGEs, which are shown to have parallel roles in determining evolutionary response. We show that social selection is central to the estimation of inclusive fitness and derive a version of Hamilton's rule showing the symmetrical effects of relatedness and IGEs on the evolution of altruism. We illustrate the utility of our approach using altruism, greenbeards, aggression, and weapons as examples. Our model provides a general predictive equation for the evolution of social phenotypes that encompasses specific cases such as kin selection and reciprocity. The parameters can be measured empirically, and we emphasize the importance of considering both IGEs and social selection, in addition to relatedness, when testing hypotheses about social evolution.  相似文献   

11.
12.
Directional selection is prevalent in nature, yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. However, the genetic basis of this limit is unresolved. Given widespread pleiotropy, opposing selection on a trait may arise from the effects of the underlying alleles on other traits under selection, generating net stabilizing selection on trait genetic variance. These pleiotropic costs of trait exaggeration may arise through any number of other traits, making them hard to detect in phenotypic analyses. Stabilizing selection can be inferred, however, if genetic variance is greater among low‐ compared to high‐fitness individuals. We extend a recently suggested approach to provide a direct test of a difference in genetic variance for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on these traits, genetic variance differed between high‐ and low‐fitness individuals and was greater among the low‐fitness males for seven of eight CHCs, significantly more than expected by chance. Univariate tests of a difference in genetic variance were nonsignificant but likely have low power. Our results suggest that further CHC exaggeration in D. serrata in response to sexual selection is limited by pleiotropic costs mediated through other traits.  相似文献   

13.
The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals’ network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group‐level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes.  相似文献   

14.
Genetic correlations for a trait across environments are predicted to decrease as environments diverge. However, estimates of genetic correlations from natural populations are typically defined across a limited environmental range and prone to very large standard errors, making it difficult to test this prediction. We address the importance of environmental distance on genetic correlations by employing data from domestic cattle in which abundant and accurate estimates are available from a wide range of environments. Three production traits related to milk yield show a clear decrease in genetic correlations with increasing environmental divergence. This pattern was also evident for growth traits and other yield traits but not for traits related to reproduction, morphology, physiology, or disease. We suspect that this reflects weaker selection on these latter trait classes compared to production traits, or alternatively the effects of selection are constrained by unfavorable genetic correlations between traits. The results support the notion that traits that historically have been under strong directional selection in a small range of frequently encountered environments will evolve high genetic correlations across these environments, while exposure to uncommon (and dissimilar) environments lead to a reranking of gene effects and a decrease in genetic correlations across environments.  相似文献   

15.
Information on 26 434 German Warmblood horses born between 1992 and 2001 was used for multivariate genetic analyses of radiographic health, conformation and performance traits to compare different modes of single- and multiple-trait selection of sires. Results of standardized radiological examinations of 5155 Hanoverian Warmblood horses, conformation evaluations from studbook inspections of 20 603 mares, and performance evaluations from mare performance tests and auction horse inspections of 16 098 horses were used for multivariate genetic analyses. Genetic parameters were estimated with restricted maximum likelihood (REML), and relative breeding values (RBV) were predicted with best linear unbiased prediction (BLUP) in multivariate linear animal models for four radiographic health traits, three conformation traits and five performance traits. Heritability estimates for osseous fragments in fetlock joints (OFF), osseous fragments in hock joints (OFH), deforming arthropathy in hock joints (DAH) and distinct radiographic findings in the navicular bones (DNB) ranged between 0.15 and 0.35 after transformation to the liability scale. Front limb conformation, hind limb conformation, withers height, walk, trot, canter, rideability and free jumping showed heritabilities between 0.09 and 0.49 and additive genetic correlations with OFF, OFH, DAH and DNB ranging between -0.53 and +0.52. Selection of sires was based on RBV or combinations of RBV, with selection for individual traits or traits from one of the three considered trait groups being considered as single-trait selection, and selection for traits from more than one trait group being considered as multiple-trait selection. The selection modes were compared by means of the expected selection response after one generation, calculated as the relative change in the prevalences of the radiographic findings or the mean conformation or performance scores in the offspring of the selected sires when compared with the offspring of all sires. The prevalences of OFF, OFH, DAH and DNB decreased by 30% to 57% after single-trait selection and 14% to 29% after multiple-trait selection, while mean conformation and performance scores increased by up to 4%. The results indicated that it is possible to simultaneously improve the radiographic health of the limbs, limb conformation, quality of gaits and rideability. However, genetic progress in free jumping ability and style could only be achieved by single- or multiple-trait selection with focus on jumping performance.  相似文献   

16.
Simulated data were used to determine the properties of multivariate prediction of breeding values for categorical and continuous traits using phenotypic, molecular genetic and pedigree information by mixed linear-threshold animal models via Gibbs sampling. Simulation parameters were chosen such that the data resembled situations encountered in Warmblood horse populations. Genetic evaluation was performed in the context of the radiographic findings in the equine limbs. The simulated pedigree comprised seven generations and 40 000 animals per generation. The simulated data included additive genetic values, residuals and fixed effects for one continuous trait and liabilities of four binary traits. For one of the binary traits, quantitative trait locus (QTL) effects and genetic markers were simulated, with three different scenarios with respect to recombination rate (r) between genetic markers and QTL and polymorphism information content (PIC) of genetic markers being studied: r = 0.00 and PIC = 0.90 (r0p9), r = 0.01 and PIC = 0.90 (r1p9), and r = 0.00 and PIC = 0.70 (r0p7). For each scenario, 10 replicates were sampled from the simulated horse population, and six different data sets were generated per replicate. Data sets differed in number and distribution of animals with trait records and the availability of genetic marker information. Breeding values were predicted via Gibbs sampling using a Bayesian mixed linear-threshold animal model with residual covariances fixed to zero and a proper prior for the genetic covariance matrix. Relative breeding values were used to investigate expected response to multi- and single-trait selection. In the sires with 10 or more offspring with trait information, correlations between true and predicted breeding values ranged between 0.89 and 0.94 for the continuous traits and between 0.39 and 0.77 for the binary traits. Proportions of successful identification of sires of average, favourable and unfavourable genetic value were 81% to 86% for the continuous trait and 57% to 74% for the binary traits in these sires. Expected decrease of prevalence of the QTL trait was 3% to 12% after multi-trait selection for all binary traits and 9% to 17% after single-trait selection for the QTL trait. The combined use of phenotype and genotype data was superior to the use of phenotype data alone. It was concluded that information on phenotypes and highly informative genetic markers should be used for prediction of breeding values in mixed linear-threshold animal models via Gibbs sampling to achieve maximum reduction in prevalences of binary traits.  相似文献   

17.
Costly female mating preferences for purely Fisherian male traits (i.e. sexual ornaments that are genetically uncorrelated with inherent viability) are not expected to persist at equilibrium. The indirect benefit of producing ‘sexy sons’ (Fisher process) disappears: in some models, the male trait becomes fixed; in others, a range of male trait values persist, but a larger trait confers no net fitness advantage because it lowers survival. Insufficient indirect selection to counter the direct cost of producing fewer offspring means that preferences are lost. The only well‐cited exception assumes biased mutation on male traits. The above findings generally assume constant direct selection against female preferences (i.e. fixed costs). We show that if mate‐sampling costs are instead derived based on an explicit account of how females acquire mates, an initially costly mating preference can coevolve with a male trait so that both persist in the presence or absence of biased mutation. Our models predict that empirically detecting selection at equilibrium will be difficult, even if selection was responsible for the location of the current equilibrium. In general, it appears useful to integrate mate sampling theory with models of genetic consequences of mating preferences: being explicit about the process by which individuals select mates can alter equilibria.  相似文献   

18.
L Min  R Yang  X Wang  B Wang 《Heredity》2011,106(1):124-133
The dissection of the genetic architecture of quantitative traits, including the number and locations of quantitative trait loci (QTL) and their main and epistatic effects, has been an important topic in current QTL mapping. We extend the Bayesian model selection framework for mapping multiple epistatic QTL affecting continuous traits to dynamic traits in experimental crosses. The extension inherits the efficiency of Bayesian model selection and the flexibility of the Legendre polynomial model fitting to the change in genetic and environmental effects with time. We illustrate the proposed method by simultaneously detecting the main and epistatic QTLs for the growth of leaf age in a doubled-haploid population of rice. The behavior and performance of the method are also shown by computer simulation experiments. The results show that our method can more quickly identify interacting QTLs for dynamic traits in the models with many numbers of genetic effects, enhancing our understanding of genetic architecture for dynamic traits. Our proposed method can be treated as a general form of mapping QTL for continuous quantitative traits, being easier to extend to multiple traits and to a single trait with repeat records.  相似文献   

19.
The fundamental equation in evolutionary quantitative genetics, the Lande equation, describes the response to directional selection as a product of the additive genetic variance and the selection gradient of trait value on relative fitness. Comparisons of both genetic variances and selection gradients across traits or populations require standardization, as both are scale dependent. The Lande equation can be standardized in two ways. Standardizing by the variance of the selected trait yields the response in units of standard deviation as the product of the heritability and the variance-standardized selection gradient. This standardization conflates selection and variation because the phenotypic variance is a function of the genetic variance. Alternatively, one can standardize the Lande equation using the trait mean, yielding the proportional response to selection as the product of the squared coefficient of additive genetic variance and the mean-standardized selection gradient. Mean-standardized selection gradients are particularly useful for summarizing the strength of selection because the mean-standardized gradient for fitness itself is one, a convenient benchmark for strong selection. We review published estimates of directional selection in natural populations using mean-standardized selection gradients. Only 38 published studies provided all the necessary information for calculation of mean-standardized gradients. The median absolute value of multivariate mean-standardized gradients shows that selection is on average 54% as strong as selection on fitness. Correcting for the upward bias introduced by taking absolute values lowers the median to 31%, still very strong selection. Such large estimates clearly cannot be representative of selection on all traits. Some possible sources of overestimation of the strength of selection include confounding environmental and genotypic effects on fitness, the use of fitness components as proxies for fitness, and biases in publication or choice of traits to study.  相似文献   

20.
Goettingen minipigs are laboratory animals with an increasing demand over the last few years. At the moment, Goettingen minipigs are not selected for a low reactivity to humans and this trait is not included in the breeding programme. However, it is obvious that there is a need for genetically non-responding minipigs during handling to facilitate the treatment and restraint of the animals which is often needed in biomedical experiments. A first testing scheme was developed to evaluate the reactivity of Goettingen minipigs to humans and to analyse whether the trait reactivity to humans can be considered in the breeding programme. In this study temperament scores of this testing scheme for nine different traits from 10,033 animals collected from 2005 to 2008 were analysed. Temperament was subjectively scored on a scale from 1 to 5 while the pig is caught (C), held on the arms (A), standing in a box for weighing (W), standing on a table (T) and walking on the ground (G). The traits were a combination of these situations evaluated at three different ages (2, 4 and 6 months). Genetic parameters were estimated using bivariate models and different possible selection strategies were examined. Heritabilities were low to moderate with a range from 0.09 to 0.22 and phenotypic and genetic correlations between the nine traits were moderate to high with phenotypic correlations between 0.12 (W2 and G4) and 0.64 (W2 and A2) and genetic correlations between 0.44 (A4 and C6) and 1.00 (e.g. W2 and A4). It was shown that the highest genetic progress per year can be obtained when all nine traits are considered in the selection index. Under an economical point of view the selection on the basis of the two arm traits plus the trait W2 should be preferred.Based on a critical discussion of the explanatory power of the used scoring system a new evaluation scheme was developed. In this scheme the minipigs can be divided into responding and non-responding animals whereas the latter are desired for selection. The suggested scoring system offers better possibilities for statistical analyses. It is planned to include the selection for non-responding Goettingen minipigs in the routine breeding programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号