首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Plasma membrane calcium/calmodulin-dependent ATPases (PMCAs) are high affinity calcium pumps that extrude calcium from the cell. Emerging evidence suggests a novel role for PMCAs as regulators of calcium/calmodulin-dependent signal transduction pathways via interaction with specific partner proteins. In this work, we demonstrate that endogenous human PMCA2 and -4 both interact with the signal transduction phosphatase, calcineurin, whereas, no interaction was detected with PMCA1. The strongest interaction was observed between PMCA2 and calcineurin. The domain of PMCA2 involved in the interaction is equivalent to that reported for PMCA4b. PMCA2-calcineurin interaction results in inhibition of the calcineurin/nuclear factor of activated T-cells signalling pathway.  相似文献   

2.
非生物逆境胁迫下植物钙信号转导的分子机制   总被引:1,自引:0,他引:1  
Ca2+作为植物细胞中最重要的第二信使, 参与植物对许多逆境信号的转导。在非生物逆境条件下, 植物细胞质内的钙离子在时间、空间及浓度上会出现特异性变化, 即诱发产生钙信号。钙信号再通过其下游的钙结合蛋白进行感受和转导, 进而在细胞内引起一系列的生物化学反应以适应或抵制各种逆境胁迫。目前在植物细胞中发现Ca2+/CDPK、Ca2+/CaM和Ca2+/CBL 3类钙信号系统, 研究表明它们与非生物逆境胁迫信号转导密切相关。本文通过从植物在非生物逆境条件下钙信号的感受、转导到产生适应性和抗性等方面, 介绍钙信号转导分子机制的一些研究进展。  相似文献   

3.
Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling.  相似文献   

4.
The central role of glutamate receptors in mediating excitotoxic neuronal death in stroke, epilepsy and trauma has been well established. Glutamate is the major excitatory amino acid transmitter within the CNS and it's signaling is mediated by a number of postsynaptic ionotropic and metabotropic receptors. Although calcium ions are considered key regulators of excitotoxicity, new evidence suggests that specific second messenger pathways rather than total Ca(2+) load, are responsible for mediating neuronal degeneration. Glutamate receptors are found localized at the synapse within electron dense structures known as the postsynaptic density (PSD). Localization at the PSD is mediated by binding of glutamate receptors to submembrane proteins such as actin and PDZ containing proteins. PDZ domains are conserved motifs that mediate protein-protein interactions and self-association. In addition to glutamate receptors PDZ-containing proteins bind a multitude of intracellular signal molecules including nitric oxide synthase. In this way PDZ proteins provide a mechanism for clustering glutamate receptors at the synapse together with their corresponding signal transduction proteins. PSD organization may thus facilitate the individual neurotoxic signal mechanisms downstream of receptors during glutamate overactivity. Evidence exists showing that inhibiting signals downstream of glutamate receptors, such as nitric oxide and PARP-1 can reduce excitotoxic insult. Furthermore we have shown that uncoupling the interaction between specific glutamate receptors from their PDZ proteins protects neurons against glutamate-mediated excitotoxicity. These findings have significant implications for the treatment of neurodegenerative diseases using therapeutics that specifically target intracellular protein-protein interactions.  相似文献   

5.
6.
In the retinogeniculate pathway of the ferret, in addition to the separation of the inputs from the two eyes to form eye-specific layers, there is also an anatomical segregation of the terminal arbors of on-center retinal ganglion cells from the terminal arbors of off-center retinal ganglion cell axons to form on/off sublaminae. Sublamination normally occurs during postnatal weeks 3-4 and requires the activity of retinal afferents, N-methyl-D-aspartate receptors, nitric oxide synthase, and a target of nitric oxide, cyclic guanosine monophosphate. Calcineurin is a calcium/calmodulin dependent serine, threonine protein phosphatase suggested to mediate NMDA-receptor dependent synaptic plasticity in the hippocampus. We have examined whether calcineurin plays a role during on/off sublamination in the dorsal lateral geniculate nucleus (dLGN) of the ferret. Immunohistochemistry showed that calcineurin expression is transiently up-regulated in dLGN cells and neuropil during the period of on/off sublamination. A functional role for calcineurin during sublamination was investigated by blocking the enzyme locally via intracranial infusion of FK506. Treatment with FK506 during postnatal weeks 3-4 disrupted the appearance of sublaminae. These results suggest that calcineurin may play a role during this process of activity-dependent pattern formation in the visual pathway.  相似文献   

7.
Nitric oxide: comparative synthesis and signaling in animal and plant cells   总被引:21,自引:0,他引:21  
Since its identification as an endothelium-derived relaxing factor in the 1980s, nitric oxide has become the source of intensive and exciting research in animals. Nitric oxide is now considered to be a widespread signaling molecule involved in the regulation of an impressive spectrum of mammalian cellular functions. Its diverse effects have been attributed to an ability to chemically react with dioxygen and its redox forms and with specific iron- and thiol-containing proteins. Moreover, the effects of nitric oxide are dependent on the dynamic regulation of its biosynthetic enzyme nitric oxide synthase. Recently, the role of nitric oxide in plants has received much attention. Plants not only respond to atmospheric nitric oxide, but also possess the capacity to produce nitric oxide enzymatically. Initial investigations into nitric oxide functions suggested that plants use nitric oxide as a signaling molecule via pathways remarkably similar to those found in mammals. These findings complement an emerging body of evidence indicating that many signal transduction pathways are shared between plants and animals.  相似文献   

8.
In the retinogeniculate pathway of the ferret, in addition to the separation of the inputs from the two eyes to form eye‐specific layers, there is also an anatomical segregation of the terminal arbors of on‐center retinal ganglion cells from the terminal arbors of off‐center retinal ganglion cell axons to form on/off sublaminae. Sublamination normally occurs during postnatal weeks 3–4 and requires the activity of retinal afferents, N‐methyl‐D‐aspartate receptors, nitric oxide synthase, and a target of nitric oxide, cyclic guanosine monophosphate. Calcineurin is a calcium/calmodulin dependent serine, threonine protein phosphatase suggested to mediate NMDA‐receptor dependent synaptic plasticity in the hippocampus. We have examined whether calcineurin plays a role during on/off sublamination in the dorsal lateral geniculate nucleus (dLGN) of the ferret. Immunohistochemistry showed that calcineurin expression is transiently up‐regulated in dLGN cells and neuropil during the period of on/off sublamination. A functional role for calcineurin during sublamination was investigated by blocking the enzyme locally via intracranial infusion of FK506. Treatment with FK506 during postnatal weeks 3–4 disrupted the appearance of sublaminae. These results suggest that calcineurin may play a role during this process of activity‐dependent pattern formation in the visual pathway. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 153–162, 2003  相似文献   

9.
PMCA1-4 isoforms have been recently recognised as regulators of various signalling pathways in mammalian cells. PMCAs were found to interact with calcineurin A in an isoform specific manner. In this study we focus on the interaction of calcineurin A with PMCA4 and its effect on catecholamine secretion in PC12 cells with reduced PMCA2 or PMCA3 content. Reduction of synthesis of PMCA2 or PMCA3 led to upregulation of PMCA4 manifested by preferential interaction of PMCA4 with calcineurin A. On the other hand, we observed a significant reduction of dopamine secretion, which did not correspond with an increased [Ca(2+)](c). This result indicates that the interaction of PMCA4 with calcineurin A plays a regulatory role in the signalling during catecholamine secretion.  相似文献   

10.
PMCA1–4 isoforms have been recently recognised as regulators of various signalling pathways in mammalian cells. PMCAs were found to interact with calcineurin A in an isoform specific manner. In this study we focus on the interaction of calcineurin A with PMCA4 and its effect on catecholamine secretion in PC12 cells with reduced PMCA2 or PMCA3 content. Reduction of synthesis of PMCA2 or PMCA3 led to upregulation of PMCA4 manifested by preferential interaction of PMCA4 with calcineurin A. On the other hand, we observed a significant reduction of dopamine secretion, which did not correspond with an increased [Ca2+]c. This result indicates that the interaction of PMCA4 with calcineurin A plays a regulatory role in the signalling during catecholamine secretion.  相似文献   

11.
Chemical signaling under abiotic stress environment in plants   总被引:1,自引:0,他引:1  
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca2+), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca2+ is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca2+ sensors detect the Ca2+ signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.Key words: ABA, abiotic stress, Ca2+ binding proteins, calcium signaling, cyclic nucleotides, nitric oxide, phosphoinositides signaling, signal transduction, sugar signaling  相似文献   

12.
Apoptotic death results from disrupting the balance between anti-apoptotic and pro-apoptotic cellular signals. The inter- and intracellular messenger nitric oxide is known to mediate either death or survival of neurones. In the present work, cerebellar granule cells were used as a model to assess the survival role of nitric oxide and to find novel signal transduction pathways related to this role. It is reported that sustained inhibition of nitric oxide production induces apoptosis in differentiated cerebellar granule neurones and that compounds that slowly release nitric oxide significantly revert this effect. Neuronal death was also reverted by a caspase-3-like inhibitor and by a cyclic GMP analogue, thus suggesting that nitric oxide-induced activation of guanylate cyclase is essential for the survival of these neurones. We also report that the Akt/GSK-3 kinase system is a transduction pathway related to the survival action of nitric oxide, as apoptosis caused by nitric oxide deprivation is accompanied by down-regulation of this, but not of other, kinase systems. Conversely, treatments able to rescue neurones from apoptosis also counteracted this down-regulation. Furthermore, in transfection experiments, overexpression of the Akt gene significantly decreased nitric oxide deprivation-related apoptosis. These results are the first evidence for a mechanism where endogenous nitric oxide promotes neuronal survival via Akt/GSK-3 pathway.  相似文献   

13.
14.
Many membrane proteins are implicated in the regulation of cell functions by triggering specific signaling pathways. Porins are known potential modulators of cell proliferation and differentiation. We explored the possible involvement of this protein in signal transduction pathways in mouse gut macrophages. In the present work we have shown that porins can trigger signal transduction in mouse macrophages infected with S. typhimurium. Activation of macrophages by porins results in an increase in inositol trisphosphate and intracellular Ca2+ mobilization. There is a translocation of protein kinase C to the membrane which is accompanied by nitric oxide release within the macrophages. This effect is the outcome of the expression of nitric oxide synthase, which is dependent on Protein kinase C. Further, we observed that there is an increased binding of the porins on macrophages infected with S. typhimurium which results in activation of macrophages and triggering of specific signaling pathways. These results indicate that porins induce the production of nitric oxide via a protein kinase C dependent pathway. Nitric oxide plays a fundamental role in macrophage effector function where it has both communication and defensive function.  相似文献   

15.
刘永锋  孔文娟  王伟 《生物磁学》2014,(9):1759-1762,1692
离子通道可以与其他蛋白质耦合形成稳定的大分子复合物,以确保信号转导的效率和准确性。大电导、钙离子激活的钾离子通道(BK通道)的核心是由形成孔区的d亚基组成的四聚体,它具有BK通道的基本生理功能。在不同的组织内,BKα可以与不同的辅助性亚基结合,使通道功能变得复杂多样。BK通道可以将细胞兴奋性与细胞内的钙离子信号联接在一起,在血流、泌尿、免疫、神经递质释放等许多生命过程中发挥着重要的调节作用。近年来,大量的研究工作表明。BK通道可以与钙离子通道、细胞骨架蛋白、蛋白激酶等生物大分子形成功能性复合物,这对通道功能调控和信号转导等生命活动具有重要的生理意义。本文综述了这些BK通道功能复合体的主要分类、功能特性以及生理学意义,并对其未来的研究前景进行展望。  相似文献   

16.
The microbial peptidomacrolide FK506 affects many eukaryotic developmental and cell signaling programs via calcineurin inhibition. Prior formation of a complex between FK506 and intracellular FK506-binding proteins (FKBPs) is the precondition for the interaction with calcineurin. A puzzling difference has emerged between the mammalian multidomain protein hFKBP38 and other FKBPs. It was shown that hFKBP38 not only binds to calcineurin but also inhibits the protein phosphatase activity of calcineurin on its own [Shirane, M. and Nakayama, K.I. (2003) Nature Cell Biol. 5, 28-37]. Inherent calcineurin inhibition by hFKBP38 would completely eliminate the need for FK506 in controlling many signal transduction pathways. To address this issue, we have characterized the functional and physical interactions between calcineurin and hFKBP38. A recombinant hFKBP38 variant and endogenous hFKBP38 were tested both in vitro and in vivo. The proteins neither directly inhibited calcineurin activity nor affected NFAT reporter gene activity in SH-SY5Y and Jurkat cells. In addition, a direct physical interaction between calcineurin and hFKBP38 was not detected in co-immunoprecipitation experiments. However, hFKBP38 indirectly affected the subcellular distribution of calcineurin by interaction with typical calcineurin ligands, as exemplified by the anti-apoptotic protein Bcl-2. Our data suggest that hFKBP38 cannot substitute for the FKBP/FK506 complex in signaling pathways controlled by the protein phosphatase activity of calcineurin.  相似文献   

17.
The evolving realization that stress proteins, which have for many years been considered to be exclusively intracellular molecules under normal conditions, can be released from viable cells via a number of potential routes/pathways has prompted interest into their extracellular biology and intercellular signaling properties. That the stress proteins Hsp60, Hsp70 and gp96 can elicit both pro- and anti-inflammatory effects suggests that these molecules play a key role in the maintenance of immunological homeostasis, and a better understanding of the immunobiology of extracellular stress proteins might reveal new and more effective approaches for controlling and managing infectious disease, inflammatory disease and cancer. A number of cell surface receptors for stress proteins have been identified, and the intracellular consequences of these cell surface receptor-ligand interactions have been characterized. To date, studies into the intercellular signaling properties of stress proteins and their interactions with antigen presenting cells have focused on specific receptor-mediated uptake, and have not considered the fact that such cells can also take up proteins via non-specific endocytosis/pinocytosis. Herein we present a methodological approach for assessing receptor-mediated and non-receptor-mediated uptake of gp96 by rat bone marrow-derived dendritic cells.  相似文献   

18.
Kim KN  Cheong YH  Gupta R  Luan S 《Plant physiology》2000,124(4):1844-1853
Calcium is a critical component in a number of plant signal transduction pathways. A new family of calcium sensors called calcineurin B-like proteins (AtCBLs) have been recently identified from Arabidopsis. These calcium sensors have been shown to interact with a family of protein kinases (CIPKs). Here we report that each individual member of AtCBL family specifically interacts with a subset of CIPKs and present structural basis for the interaction and for the specificity underlying these interactions. Although the C-terminal region of CIPKs is responsible for interaction with AtCBLs, the N-terminal region of CIPKs is also involved in determining the specificity of such interaction. We have also shown that all three EF-hand motifs in AtCBL members are required for the interaction with CIPKs. Several AtCBL members failed to interact with any of the CIPKs presented in this study, suggesting that these AtCBL members either have other CIPKs as targets or they target distinct proteins other than CIPKs. These results may provide structural basis for the functional specificity of CBL family of calcium sensors and their targets.  相似文献   

19.
Anandamide (arachidonylethanolamide) and 2-arachidonoylglycerol mediate many of their actions via either CB(1) or CB(2) cannabinoid receptor subtypes. These agonist-receptor interactions result in activation of G proteins, particularly those of the G(i/o) family. Signal transduction pathways that are regulated by these G proteins include inhibition of adenylyl cyclase, regulation of ion currents (inhibition of voltage-gated L, N and P/Q Ca(2+)-currents; activation of K(+) currents); activation of focal adhesion kinase (FAK), mitogen activated protein kinase (MAPK) and induction of immediate early genes; and stimulation of nitric oxide synthase (NOS). Other effects of anandamide and/or 2-arachidonoylglycerol that are not mediated via cannabinoid receptors include inhibition of L-type Ca(2+) channels, stimulation of VR(1) vanilloid receptors, transient changes in intracellular Ca(2+), and disruption of gap junction function. Cardiovascular regulation by anandamide appears to occur by a variety of receptor-mediated and non-receptor-mediated mechanisms. This review will describe and evaluate each of these signal transduction pathways and mechanisms.  相似文献   

20.
 Calcium is known to be of critical importance for hormone secretion in the insulin-producing B-cells of the endocrine pancreas. Calcium-mediated intracellular signal transduction and the regulation of the concentration of free calcium in B-cells probably involve calcium-binding proteins. In the present study, we have investigated the expression of the calcium/calmodulin-dependent phosphatase, calcineurin, and the EF-hand calcium-binding protein, calretinin, in pancreata of hamsters, gerbils, and rats by immunocytochemistry. Immunocytochemical investigations of serial semithin sections of plastic-embedded pancreata revealed that calcineurin and calretinin were constantly present in islet cells of all three species. In addition to B-cells, these proteins could also be detected in glucagon (A-), somatostatin (D-), and pancreatic polypeptide (PP-) cells. Non-B-cells, especially glucagon-producing A-cells, often exhibited a significantly higher degree of immunoreactivity for both calcium-binding proteins than B-cells. Thus, calcineurin and calretinin may play distinct roles in the regulation of calcium-dependent secretory activities of the different pancreatic endocrine cell types. Accepted: 10 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号