首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Contribution of apoptotic cell death to renal injury   总被引:3,自引:0,他引:3  
Cell number abnormalities are frequent in renal diseases, and range from the hypercellularity of postinfectious glomerulonephritis to the cell depletion of chronic renal atrophy. Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in the kidney. The role of apoptosis ranges from induction to repair and progression of renal injury. Death ligands and receptors, such as TNF and FasL, proapoptotic and antiapoptotic Bcl-2 family members and caspases have all been shown to participate in apoptosis regulation in the course of renal injury. These proteins represent potential therapeutic targets, which should be further explored.  相似文献   

2.
病毒microRNA研究进展   总被引:1,自引:0,他引:1  
microRNA(miRNA)是一类存在于多细胞生物中长约21-24nt的非编码RNA分子,它们与靶mRNA分子互补结合抑制蛋白翻译或导致mRNA降解,从而调控靶基因表达。miRNA已被证实在多种代谢途径中发挥重要作用,调节包括细胞分化和分裂、细胞凋亡及癌症发生在内的多个细胞过程。利用生物信息学以及分子克隆的方法在线虫、哺乳动物以及植物中已发现超过4000条miRNA。最近在病毒中也发现有miRNA基因存在,通过对病毒miRNA靶基因的预测,推测其在病毒复制过程中发挥重要的调控作用。目前病毒编码的miRNA分子的特点、转录机制、功能、进化保守性以及病毒与宿主miRNA的关系都已有一定的了解。对于病毒相关miRNA研究的深入,必将对认识病毒-宿主相互作用以及相关疾病的治疗带来新的启示。  相似文献   

3.
4.
tMicroRNAs (miRNAs) are small noncoding RNAs involved in regulating cellular proliferation, differentiation and signaling pathways. Recent researches reveal that miRNAs also play an important role in genes related to hepatic diseases. The different expression profiles of miRNA in hepatocellular carcinoma suggested that miRNA might serve as either novel potential targets acting directly as oncogenes or therapeutic molecular targets working as tumor suppressor genes. For better understanding the relationship between miRNAs and liver diseases and the prospects for therapy in future, this review summarizes the effects of miRNAs on hepatitis, alcohol induced liver injury and hepatocellular carcinoma.  相似文献   

5.
MiRNAs are known to regulate gene expression and in the context of cancer have been shown to regulate metastasis, cell proliferation and cell death. In this report we describe potential miRNA regulatory roles with respect to induction of cell death by pharmacologic dose of Epidermal Growth Factor (EGF). Our previous work suggested that multiple pathways are involved in the induction of apoptosis, including interferon induced genes, cytokines, cytoskeleton and cell adhesion and TP53 regulated genes. Using miRNA time course expression profiling of EGF treated A431 cells and coupling this to our previous gene expression and proteomic data, we have been able to implicate a number of additional miRNAs in the regulation of apoptosis. Specifically we have linked miR-134, miR-145, miR-146b-5p, miR-432 and miR-494 to the regulation of both apoptotic and anti-apoptotic genes expressed as a function of EGF treatment. Whilst additional miRNAs were differentially expressed, these had the largest number of apoptotic and anti-apoptotic targets. We found 5 miRNAs previously implicated in the regulation of apoptosis and our results indicate that an additional 20 miRNAs are likely to be involved based on their correlated expression with targets. Certain targets were linked to multiple miRNAs, including PEG10, BTG1, ID1, IL32 and NCF2. Some miRNAs that target the interferon pathway were found to be down regulated, consistent with a novel layer of regulation of interferon pathway components downstream of JAK/STAT. We have significantly expanded the repertoire of miRNAs that may regulate apoptosis in cancer cells as a result of this work.  相似文献   

6.
7.
8.
Autophagy and apoptosis are 2 stress-response mechanisms that are closely interconnected. However, the molecular interplays between these 2 pathways remain to be clarified. Here we report that the crucial proautophagic factor AMBRA1 can act as a positive mediator of mitochondrial apoptosis. Indeed, we show that, in a proapoptotic positive feedback loop, the C-terminal part of AMBRA1, generated by CASP/CASPASE cleavage upon apoptosis induction, inhibits the antiapoptotic factor BCL2 by a direct binding through its BH3-like domain. The mitochondrial AMBRA1-BCL2 complex is thus at the crossroad between autophagy and cell death and may represent a novel target in development of therapeutic approaches in clinical diseases.  相似文献   

9.
miRNAs are nodal regulators of gene expression and deregulation of miRNAs is causally associated with different diseases, including cancer. Modulation of miRNA expression is thus of therapeutic importance. Small molecules are currently being explored for their potential to downregulate miRNAs. Peptides have shown to have better potency and selectivity toward their targets but their potential in targeting and modulating miRNAs remain unexplored. Herein, using phage display we found a very selective peptide against pre-miR-21. Interestingly, the peptide has the potential to downregulate miR-21, by binding to pre-miR-21 and hindering Dicer processing. It is selective towards miR-21 inside the cell. By antagonising miR-21 function, the peptide is able to increase the expression of its target proteins and thereby increase apoptosis and suppress cell proliferation, invasion and migration. This peptide can further be explored for its anti-cancer activity in vivo and may be even extended to clinical studies.  相似文献   

10.
11.
12.
Bcl-2 family members and apoptosis, taken to heart   总被引:13,自引:0,他引:13  
Loss of myocardial cells via apoptosis has been observed in many cardiovascular diseases and has been shown to contribute to the initiation and progression of heart failure. The Bcl-2 family members are important regulators of the mitochondrial pathway of apoptosis. These proteins decide whether the mitochondria should initiate the cell death program and release proapoptotic factors such as cytochrome c. The Bcl-2 proteins consist of anti- and proapoptotic members and play a key role in regulating apoptosis in the myocardium. The antiapoptotic proteins have been demonstrated to protect against various cardiac pathologies, whereas the antiapoptotic proteins have been reported to contribute to heart disease. This review summarizes the current understanding of the role of Bcl-2 proteins in the heart. cardiovascular disease; cytochrome c; protein; mitochondria  相似文献   

13.
MicroRNAs in skeletal and cardiac muscle development   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are a recently discovered class of small non-coding RNAs, which are approximately 22 nucleotides in length. miRNAs negatively regulate gene expression by translational repression and target mRNA degradation. It has become clear that miRNAs are involved in many biological processes, including development, differentiation, proliferation, and apoptosis. Interestingly, many miRNAs are expressed in a tissue-specific manner and several miRNAs are specifically expressed in cardiac and skeletal muscles. In this review, we focus on those miRNAs that have been shown to be involved in muscle development. Compelling evidences have demonstrated that muscle miRNAs play an important role in the regulation of muscle proliferation and differentiation processes. However, it appears that miRNAs are not essential for early myogenesis and muscle specification. Importantly, dysregulation of miRNAs has been linked to muscle-related diseases, such as cardiac hypertrophy. A mutation resulting in a gain-of-function miRNA target site in the myostatin gene leads to down regulation of the targeted protein in Texel sheep. miRNAs therefore are a new class of regulators of muscle biology and they might become novel therapeutic targets in muscle-related human diseases.  相似文献   

14.
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic malignancy with poor prognosis. Despite improvements in its diagnosis and therapy, the prognosis for ICC patients remains poor. An improved understanding of ICC pathogenesis and consequential identification of novel therapeutic targets would improve the prognosis of ICC patients. MicroRNAs (miRNAs) are a class of highly conserved, endogenous, small non‐coding RNA molecules of 18–23 nucleotides in length, which regulate gene expression through complementary base‐pairing with target messenger RNAs and subsequent gene silencing. Several studies have shown deregulated expression of miRNAs in ICC cell lines and tissues, in which these miRNAs play important roles in ICC apoptosis, cell proliferation, invasion, migration and metastasis. In this review, we illustrate the potential role of miRNA in the pathogenesis of ICC and explore the possibilities of using miRNAs as prognostic and diagnostic markers, as well as therapeutic targets in ICC.  相似文献   

15.
The studies into the pathophysiology of viral miRNAs are still in infancy; the interspecies regulation at the miRNA level fuels the spark of the investigation into the repertoire of virus–host interactions. Reports pertaining to the viral miRNAs role in modulating/evading the host immune response are surging up; we initiated this in silico study to speculate the role of human cytomegalovirus (HCMV)-encoded miRNAs on human antiviral mechanisms such as apoptosis and autophagy. The results indicate that both the above mechanisms were targeted by the HCMV miRNAs, located in the unique long region of the HCMV genome. The proapoptotic genes MOAP1, PHAP, and ERN1 are identified to be the potential targets for the miR-UL70-3p and UL148D, respectively. The ERN1 gene plays a role in the initiation of Endoplasmic reticulum stress-induced apoptosis as well as autophagosome formation. This study shows that HCMV employs its miRNA repertoire for countering the cellular apoptosis and autophagy, particularly the mitochondrial-dependent intrinsic pathway of apoptosis. In addition, the homology studies reveal no HCMV miRNA bears sequence homology with human miRNAs.  相似文献   

16.
17.
18.
19.
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号