首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis (“strep throat”) to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.  相似文献   

2.
3.
Assimilatory NADH:nitrate reductase (EC 1.6.6.1), a complex Mo-pterin-, cytochrome b(557)-, and FAD-containing protein, catalyzes the regulated and rate-limiting step in the utilization of inorganic nitrogen by higher plants. A codon-optimized gene has been synthesized for expression of the central cytochrome b(557)-containing fragment, corresponding to residues A542-E658, of spinach assimilatory nitrate reductase. While expression of the full-length synthetic gene in Escherichia coli did not result in significant heme domain production, expression of a Y647* truncated form resulted in substantial heme domain production as evidenced by the generation of "pink" cells. The histidine-tagged heme domain was purified to homogeneity using a combination of NTA-agarose and size-exclusion FPLC, resulting in a single protein band following SDS-PAGE analysis with a molecular mass of approximately 13 kDa. MALDI-TOF mass spectrometry yielded an m/z ratio of 12,435 and confirmed the presence of the heme prosthetic group (m/z=622) while cofactor analysis indicated a 1:1 heme to protein stoichiometry. The oxidized heme domain exhibited spectroscopic properties typical of a b-type cytochrome with a visible Soret maximum at 413 nm together with epr g-values of 2.98, 2.26, and 1.49, consistent with low-spin bis-histidyl coordination. Oxidation-reduction titrations of the heme domain indicated a standard midpoint potential (E(o)') of -118 mV. The isolated heme domain formed a 1:1 complex with cytochrome c with a K(A) of 7 microM (micro=0.007) and reconstituted NADH:cytochrome c reductase activity in the presence of a recombinant form of the spinach nitrate reductase flavin domain, yielding a k(cat) of 1.4 s(-1) and a K(m app) for cytochrome c of 9 microM. These results indicate the efficient expression of a recombinant form of the heme domain of spinach nitrate reductase that retained the spectroscopic and thermodynamic properties characteristic of the corresponding domain in the native spinach enzyme.  相似文献   

4.
Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.  相似文献   

5.
Heme-mediated regulation, presented in many biological processes, is achieved in part with proteins containing heme regulatory motif. In this study, we demonstrate that FLAG-tagged PpsR isolated from Rhodobacter sphaeroides cells contains bound heme. In vitro heme binding studies with tagless apo-PpsR show that PpsR binds heme at a near one-to-one ratio with a micromolar binding constant. Mutational and spectral assays suggest that both the second Per-Arnt-Sim (PAS) and DNA binding domains of PpsR are involved in the heme binding. Furthermore, we show that heme changes the DNA binding patterns of PpsR and induces different responses of photosystem genes expression. Thus, PpsR functions as both a redox and heme sensor to coordinate the amount of heme, bacteriochlorophyll, and photosystem apoprotein synthesis thereby providing fine tune control to avoid excess free tetrapyrrole accumulation.  相似文献   

6.
Streptococcal surface dehydrogenase (SDH) is a multifunctional, anchorless protein present on the surface of group A Streptococcus (GAS). It plays a regulatory role in GAS-mediated intracellular signaling events in human pharyngeal cells. Using ligand-binding assays, we have identified an approximately 55 kDa protein as an SDH-specific receptor protein on the surface of Detroit human pharyngeal cells. LC-MS/MS analyses identified this SDH-binding pharyngeal cell-surface-exposed membrane-bound protein as uPAR (urokinase plasminogen activator receptor)/CD87. Ligand-binding assays also revealed that only the N-terminal domain (D1) of uPAR bound to SDH. uPAR-D1 more specifically bound to the C-terminal alpha-helix and two immediate flanking regions of the S-loop of the SDH molecule. Site-directed mutagenesis in GAS resulting in SDH with altered C-terminal ends, and the removal of uPAR from pharyngeal cells by phosphatidylinositol-phopsholipase C treatment decreased GAS ability to adhere to pharyngeal cells. When compared to uninfected Detroit pharyngeal cells, GAS-infected pharyngeal cells showed a transient but a significant increase in the expression of uPAR-specific mRNA, and a prolonged recycling process of uPAR on the cell surface. Together, these results indicate that the specific streptococcal surface protein-pharyngeal cell receptor interaction mediated by SDH and uPAR is modulated during GAS infection of human pharyngeal cells. This interaction significantly contributes to bacterial adherence and thus may play a significant role in GAS pathogenesis by regulating intracellular signaling events in pharyngeal cells.  相似文献   

7.
Adherence of Streptococcus pneumoniae (the pneumococcus) to the epithelial lining of the nasopharynx can result in colonization and is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. In vitro adherence assays can be used to study the attachment of pneumococci to epithelial cell monolayers and to investigate potential interventions, such as the use of probiotics, to inhibit pneumococcal colonization. The protocol described here is used to investigate the effects of the probiotic Streptococcus salivarius on the adherence of pneumococci to the human epithelial cell line CCL-23 (sometimes referred to as HEp-2 cells). The assay involves three main steps: 1) preparation of epithelial and bacterial cells, 2) addition of bacteria to epithelial cell monolayers, and 3) detection of adherent pneumococci by viable counts (serial dilution and plating) or quantitative real-time PCR (qPCR). This technique is relatively straightforward and does not require specialized equipment other than a tissue culture setup. The assay can be used to test other probiotic species and/or potential inhibitors of pneumococcal colonization and can be easily modified to address other scientific questions regarding pneumococcal adherence and invasion.  相似文献   

8.
9.
10.
The interleukin (IL)-1β-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1β processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1β processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis.  相似文献   

11.
Severe tick infestation was found in a hare in a suburban area of Nanchang, Jiangxi Province, China. We sampled ticks and identified them based on their morphologic characteristics. Three species, Ixodes sinensis, which is commonly found in China and can experimentally transmit Borrelia burgdorferi, Rhipicephalus haemaphysaloides, and Haemaphysalis longicornis which can transmit Lyme disease were detected with an optical microscope and a stereomicroscope. Risk of spreading ticks from suburban to urban areas exists due to human transportation and travel between the infested and non-infested areas around Nanchang.  相似文献   

12.
Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the flower development field.  相似文献   

13.
14.

Background and Aims

In the Mascarenes, a young oceanic archipelago composed of three main islands, the Dombeyoideae (Malvaceae) have diversified extensively with a high endemism rate. With the exception of the genus Trochetia, Mascarene Dombeyoideae are described as dioecious whereas Malagasy and African species are considered to be monocline, species with individuals bearing hermaphrodite/perfect flowers. In this study, the phylogenetic relationships were reconstructed to clarify the taxonomy, understand the phylogeographic pattern of relationships and infer the evolution of the breeding systems for the Mascarenes Dombeyoideae.

Methods

Parsimony and Bayesian analysis of four DNA markers (ITS, rpl16 intron and two intergenic spacers trnQ-rsp16 and psbM-trnD) was used. The molecular matrix comprised 2985 characters and 48 taxa. The Bayesian phylogeny was used to infer phylogeographical hypotheses and the evolution of breeding systems.

Key Results

Parsimony and Bayesian trees produced similar results. The Dombeyoideae from the Mascarenes are polyphyletic and distributed among four clades. Species of Dombeya, Trochetia and Ruizia are nested in the same clade, which implies the paraphyly of Dombeya. Additionally, it is shown that each of the four clades has an independent Malagasy origin. Two adaptive radiation events have occurred within two endemic lineages of the Mascarenes. The polyphyly of the Mascarene Dombeyoideae suggests at least three independent acquisitions of dioecy.

Conclusions

This molecular phylogeny highlights the taxonomic issues within the Dombeyoideae. Indeed, the limits and distinctions of the genera Dombeya, Trochetia and Ruizia should be reconsidered. The close phylogeographic relationships between the flora of the Mascarenes and Madagascar are confirmed. Despite their independent origins and a distinct evolutionary history, each endemic clade has developed a different breeding systems (dioecy) compared with the Malagasy Dombeyoideae. Sex separation appears as an evolutionary convergence and may be the consequence of selective pressures particular to insular environments.  相似文献   

15.
Many important pathogens have humans as their normal ecological niche where healthy carriage dominates over disease. The ability of these commensal pathogens, such as Streptococcus pneumoniae, to cause disease depends on a series of microbial factors as well as of genetic and environmental factors in the human host affecting the clearing capacity mediated by the innate and adaptive immune system. This delicate interplay between microbe and host affects not only the likelihood for a commensal pathogen to cause disease, but also disease type and disease severity.  相似文献   

16.
Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection.  相似文献   

17.
The Atlantic salmon (Salmo salar) serum lectin (SSL) is a soluble C-type lectin that binds bacteria, including salmon pathogens. This lectin is a cysteine-rich oligomeric protein. Consequently, a Drosophila melanogaster expression system was evaluated for use in expressing SSL. A cDNA encoding SSL was cloned into a vector designed to express it as a fusion protein with a hexahistidine tag, under the control of the Drosophila methallothionein promoter. The resulting construct was stably transfected into Drosophila S2 cells. After CdCl2 induction, transfected S2 cells secreted recombinant SSL into the cell culture medium. A cell line derived from stably transformed polyclonal cell populations expressing SSL was used for large-scale expression of SSL. Recombinant SSL was purified from the culture medium using a two-step purification scheme involving affinity binding to yeast cells and metal-affinity chromatography. Although yields of SSL were very low, correct folding and functionality of the recombinant SSL purified in this manner was demonstrated by its ability to bind to Aeromonas salmonicida. Therefore, Drosophila S2 cells may be an ideal system for the production of SSL if yields can be increased.  相似文献   

18.
In this paper, we firstly reported a C-type lectin cDNA clone of 1029 bps from the larvae of A. Pernyi (Ap-CTL) using PCR and RACE techniques. The full-length cDNA contains an open reading frame encoding 308 amino acid residues which has two different carbohydrate-recognition domains (CRDs) arranged in tandem. To investigate the biological activities in the innate immunity, recombinant Ap-CTL was expressed in E. coli with a 6-histidine at the amino-terminus (Ap-rCTL). Besides acted as a broad-spectrum recognition protein binding to a wide range of PAMPs and microorganisms, Ap-rCTL also had the ability to recognize and trigger the agglutination of bacteria and fungi. In the proPO activation assay, Ap-rCTL specifically restored the PO activity of hemolymph blocked by anti-Ap-rCTL antibody in the presence of different PAMPs or microorganisms. In summary, Ap-rCTL plays an important role in insect innate immunity as an pattern recognition protein. [BMB Reports 2013; 46(7): 358-363]  相似文献   

19.
Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.  相似文献   

20.
The ability to move on solid surfaces provides ecological advantages for bacteria, yet many bacterial species lack this trait. We found that Xanthomonas spp. overcome this limitation by making use of proficient motile bacteria in their vicinity. Using X. perforans and Paenibacillus vortex as models, we show that X. perforans induces surface motility, attracts proficient motile bacteria and ‘rides'' them for dispersal. In addition, X. perforans was able to restore surface motility of strains that lost this mode of motility under multiple growth cycles in the lab. The described interaction occurred both on agar plates and tomato leaves and was observed between several xanthomonads and motile bacterial species. Thus, suggesting that this motility induction and hitchhiking strategy might be widespread and ecologically important. This study provides an example as to how bacteria can rely on the abilities of their neighboring species for their own benefit, signifying the importance of a communal organization for fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号