首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Species boundaries in Asian leaf turtles of the genus Cyclemys are difficult to define on the basis of morphology, primarily because many populations exhibit considerable ontogenetic variation in shell and head coloration. Two recent molecular phylogenetic hypotheses of Cyclemys species relationships, based largely on market and pet-trade samples of uncertain provenance, were highly incongruent. We used historical DNA methods to sequence fragments of the mitochondrial cytochrome  b gene from eight type specimens of Cyclemys (including one collected by Alfred Russel Wallace), and phylogenetically placed these type sequences into the context of published cytochrome  b variation. Our phylogenetic hypothesis supports the recognition of four named species ( Cyclemys atripons , Cyclemys dentata , Cyclemys oldhamii , and C. pulchristriata ), as well as a fifth species of unknown geographical provenance obtained from the Hong Kong pet trade. The type sequences show that previous molecular phylogenetic studies were hampered by misidentifications, supporting the notion that Cyclemys of unknown provenance are not reliably identified to species solely on the basis of morphology.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 131–141.  相似文献   

2.
3.
An effective method for isolating DNA from historical specimens of baleen   总被引:2,自引:0,他引:2  
DNA was isolated from an early twentieth century museum specimen of northern right whale baleen. A system of stringent controls and a novel set of cetacean specific primers eliminated contamination from external sources and ensured the authenticity of the results. Sequence analysis revealed that there were informative nucleotide positions between the museum specimen and extant members of the population and closely related species. The results indicate that museum specimens of baleen can be used to assess historical genetic population structure of the great whales.  相似文献   

4.
5.
In this study, we evaluated the efficacy of various primers for the purpose of DNA barcoding old, pinned museum specimens of blackflies (Diptera: Simuliidae). We analysed 271 pinned specimens representing two genera and at least 36 species. Due to the age of our material, we targeted overlapping DNA fragments ranging in size from 94 to 407 bp. We were able to recover valid sequences from 215 specimens, of which 18% had 500‐ to 658‐bp barcodes, 36% had 201‐ to 499‐bp barcodes and 46% had 65‐ to 200‐bp barcodes. Our study demonstrates the importance of choosing suitable primers when dealing with older specimens and shows that even very short sequences can be diagnostically informative provided that an appropriate gene region is used. Our study also highlights the lack of knowledge surrounding blackfly taxonomy, and we briefly discuss the need for further phylogenetic studies in this socioeconomically important family of insects.  相似文献   

6.
Mitochondrial DNA (mtDNA) sequences from eight species of myiasis-causing flies, stored for up to 50 years, were amplified successfully. Universal primers were used to amplify six specific regions from total genomic DNA, including five mtDNA genes. The comparison of phenol/chloroform, DNAzol and Chelex techniques for DNA extraction showed that the DNAzol reagent was the most efficient in retrieving DNA from museum specimens, although the Chelex extraction procedure is currently the most frequently reported method. Comparison of the universal primer sequences with the homologous sequences of Cochliomyia hominivorax Coquerel and Chrysomya putoria Wiedemann (Diptera: Calliphoridae) revealed mismatches that could contribute to the low recovery of a short sequence from subunit II of cytochrome oxidase. The ability to characterize mtDNA markers from museum specimens should be useful in comparative studies of contemporary samples and should help in elucidating species introduction, colonization and dispersal.  相似文献   

7.
Next‐generation sequencing has greatly expanded the utility and value of museum collections by revealing specimens as genomic resources. As the field of museum genomics grows, so does the need for extraction methods that maximize DNA yields. For avian museum specimens, the established method of extracting DNA from toe pads works well for most specimens. However, for some specimens, especially those of birds that are very small or very large, toe pads can be a poor source of DNA. In this study, we apply two DNA extraction methods (phenol–chloroform and silica column) to three different sources of DNA (toe pad, skin punch and bone) from 10 historical avian museum specimens. We show that a modified phenol–chloroform protocol yielded significantly more DNA than a silica column protocol (e.g., Qiagen DNeasy Blood & Tissue Kit) across all tissue types. However, extractions using the silica column protocol contained longer fragments on average than those using the phenol–chloroform protocol, probably as a result of loss of small fragments through the silica column. While toe pads yielded more DNA than skin punches and bone fragments, skin punches proved to be a reliable alternative source of DNA and might be especially appealing when toe pad extractions are impractical. Overall, we found that historical bird museum specimens contain substantial amounts of DNA for genomic studies under most extraction scenarios, but that a phenol–chloroform protocol consistently provides the high quantities of DNA required for most current genomic protocols.  相似文献   

8.
Despite advances that allow DNA sequencing of old museum specimens, sequencing small‐bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small‐bodied (3–6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58–159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1–10 ng). We also explored low‐cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low‐input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens.  相似文献   

9.
There are large museum collections of mammalian skins and we wished to determine their usefulness for DNA‐based evolutionary and conservation studies. Methods derived from the ancient DNA approach were used to process samples from skins of the stoat (Mustela erminea) from 18 museums in 11 countries. Successful polymerase chain reaction (PCR) amplification was achieved in 56%, 46% and 40% of all samples for 0.65‐, 0.70‐ and 0.78‐kb PCR products of mitochondrial DNA, respectively. Some of the best‐preserved skin samples were those in tight‐fitting containers in a dry and cold environment. With care in their preservation, mammalian skin collections may be a good source of DNA.  相似文献   

10.
Peregrine falcon populations underwent devastating declines in the mid-20th century due to the bioaccumulation of organochlorine contaminants, becoming essentially extirpated east of the Great Plains and significantly reduced elsewhere in North America. Extensive re-introduction programs and restrictions on pesticide use in Canada and the United States have returned many populations to predecline sizes. A proper population genetic appraisal of the consequences of this decline requires an appropriate context defined by (i) meaningful demographic entities; and (ii) suitable reference populations. Here we explore the validity of currently recognized subspecies designations using data from the mitochondrial control region and 11 polymorphic microsatellite loci taken from 184 contemporary individuals from across the breeding range, and compare patterns of population genetic structure with historical patterns inferred from 95 museum specimens. Of the three North American subspecies, the west coast marine subspecies Falco peregrinus pealei is well differentiated genetically in both time periods using nuclear loci. In contrast, the partitioning of continental Falco peregrinus anatum and arctic Falco peregrinus tundrius subspecies is not substantiated, as individuals from these subspecies are historically indistinguishable genetically. Bayesian clustering analyses demonstrate that contemporary genetic differentiation between these two subspecies is mainly due to changes within F. p. anatum (specifically the southern F. p. anatum populations). Despite expectations and a variety of tests, no genetic bottleneck signature is found in the identified populations; in fact, many contemporary indices of diversity are higher than historical values. These results are rationalized by the promptness of the recovery and the possible introduction of new genetic material.  相似文献   

11.
Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic reconstructions across the tree of life. However, inadvertently incorporating non‐targeted DNA into the UCE marker design will lead to misinformation being incorporated into subsequent analyses. To date, the effectiveness of basic metagenomic filtering strategies has not been assessed in arthropods. Designing markers from museum specimens requires careful consideration of methods due to the high levels of microbial contamination typically found in such specimens. We investigate if contaminant sequences are carried forward into a UCE marker set we developed from insect museum specimens using a standard bioinformatics pipeline. We find that the methods currently employed by most researchers do not exclude contamination from the final set of targets. Lastly, we highlight several paths forward for reducing contamination in UCE marker design.  相似文献   

12.
13.
With the development of the DNA barcoding project, a large number of specimens are required to establish the library of reference barcode. Formalin-fixed samples from museums provide a potential resource for it. However, recovery of DNA and amplification of the target gene from formalin-fixed samples are challenging. In this study, a hot alkali pre-treatment accompanied by the use of cetyltrimethylammonium bromide (CTAB) method was employed for DNA recovery from formalin-preserved samples, with the purpose of pursuing the optimal condition for high quantity and quality of DNA and minimizing PCR inhibition. Meanwhile, a semi-nested PCR-based method was developed to enhance the efficacy of amplification. This advanced protocol was demonstrated to be reliable and effective. Even for 23-year-old samples, genomic DNA could be extracted, and COI gene was correctly sequenced.  相似文献   

14.
The amount of nuclear DNA extracted from teeth of 279 individual red fox Vulpes vulpes collected over a period spanning the last three decades was determined by quantitative polymerase chain reaction (PCR). Although teeth were autoclaved during initial collection, 73.8% of extracts contained sufficient DNA concentration (> 5 pg/ micro L) suitable for reliable microsatellite genotyping but the quantity of nuclear DNA decayed significantly over time in a nonlinear pattern. The success of PCR amplification across four examined canine microsatellites over time was dependent on fragment size. By including data from two different tests for human contamination and from frequencies of allelic dropout and false alleles, the methodological constraints of population genetic studies using microsatellite loci amplified from historic DNA are discussed.  相似文献   

15.
16.
Seven species of dwarf lemurs (Cheirogaleus spp.) are currently recognized after a recent revision of the genus. During a field study in southeastern Madagascar, we observed 3 distinct morphotypes of Cheirogaleus resembling Cheirogaleus medius, C. major and C. crossleyi. In particular, for Cheirogaleus crossleyi southeastern Madagascar was far away from the known distribution range of the species when referring to the recent revision of the genus. In order to clarify the taxonomic status of the 3 morphotypes, we compared field samples from southeastern Madagascar to museum specimens from several locations in Madagascar and to field samples from Kirindy/CFPF, western Madagascar by genetic analyses using the mitochondrial cytochrome b gene. Genetic data yield strong support for 2 of the 3 morphotypes to represent Cheirogaleus medius and C. major. The third morphotype is genetically closely related to Cheirogaleus crossleyi, albeit more distantly than the other 2 morphotypes to the respective reference samples. The genetic distance is related to a considerable geographic distance between the location of our field study and the origin of the respective reference specimen, because Cheirogaleus crossleyi had been reported only from northern Madagascar. Our field observations indicate an isolated population in southeastern Madagascar. We propose to identify them as Cheirogaleus crossleyi and discuss the population genetic and biogeographic considerations supporting this conclusion.  相似文献   

17.
Laboratory techniques for high‐throughput sequencing have enhanced our ability to generate DNA sequence data from millions of natural history specimens collected prior to the molecular era, but remain poorly tested at shallower evolutionary time scales. Hybridization capture using restriction site‐associated DNA probes (hyRAD) is a recently developed method for population genomics with museum specimens. The hyRAD method employs fragments produced in a restriction site‐associated double digestion as the basis for probes that capture orthologous loci in samples of interest. While promising in that it does not require a reference genome, hyRAD has yet to be applied across study systems in independent laboratories. Here, we provide an independent assessment of the effectiveness of hyRAD on both fresh avian tissue and dried tissue from museum specimens up to 140 years old and investigate how variable quantities of input DNA affect sequencing, assembly, and population genetic inference. We present a modified bench protocol and bioinformatics pipeline, including three steps for detection and removal of microbial and mitochondrial DNA contaminants. We confirm that hyRAD is an effective tool for sampling thousands of orthologous SNPs from historic museum specimens to describe phylogeographic patterns. We find that modern DNA performs significantly better than historical DNA better during sequencing but that assembly performance is largely equivalent. We also find that the quantity of input DNA predicts %GC content of assembled contiguous sequences, suggesting PCR bias. We caution against sampling schemes that include taxonomic or geographic autocorrelation across modern and historic samples.  相似文献   

18.
We surveyed mitochondrial, autosomal, and Z chromosome diversity within and between the Copperback Quail‐thrush Cinclosoma clarum and Chestnut Quail‐thrush C. castanotum, which together span the arid and semi‐arid zones of southern Australia, and primarily from specimens held in museum collections. We affirm the recent taxonomic separation of the two species and then focus on diversity within the more widespread of the two species, C. clarum. To guide further study of the system and what it offers to understanding the genomics of the differentiation and speciation processes, we develop and present a hypothesis to explain mitonuclear discordance that emerged in ourdata. Following a period of historical allopatry, secondary contact has resulted in an eastern mitochondrial genome replacing the western mitochondrial genome in western populations. This is predicted under a population‐level invasion in the opposite direction, that of the western population invading the range of the eastern one. Mitochondrial captures can be driven by neutral, demographic processes, or adaptive mechanisms, and we favor the hypothesized capture being driven by neutral means. We cannot fully reject the adaptive process but suggest how these alternatives may be further tested. We acknowledge an alternative hypothesis, which finds some support in phenotypic data published elsewhere, namely that outcomes of secondary contact have been more complex than our current genomic data suggest. Discriminating and reconciling these two alternative hypotheses, which may not be mutually exclusive, could be tested with closer sampling at levels of population, individual, and nucleotide than has so far been possible. This would be further aided by knowledge of the genetic basis to phenotypic variation described elsewhere.  相似文献   

19.
Smallpox, caused by the variola virus (VARV), was a highly virulent disease with high mortality rates causing a major threat for global human health until its successful eradication in 1980. Despite previously published historic and modern VARV genomes, its past dissemination and diversity remain debated. To understand the evolutionary history of VARV with respect to historic and modern VARV genetic variation in Europe, we sequenced a VARV genome from a well-described eighteenth-century case from England (specimen P328). In our phylogenetic analysis, the new genome falls between the modern strains and another historic strain from Lithuania, supporting previous claims of larger diversity in early modern Europe compared to the twentieth century. Our analyses also resolve a previous controversy regarding the common ancestor between modern and historic strains by confirming a later date around the seventeenth century. Overall, our results point to the benefit of historic genomes for better resolution of past VARV diversity and highlight the value of such historic genomes from around the world to further understand the evolutionary history of smallpox as well as related diseases.This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.  相似文献   

20.
Patterns of genetic differentiation were analysed and compared in two sympatric species of the endemic Lake Tanganyika cichlid tribe Eretmodini by means of mitochondrial DNA (mtDNA) sequences of the control region and six microsatellite DNA loci. The sample area covers a total of 138 km of mostly uninterrupted rocky shoreline in the Democratic Republic of Congo and includes the entire distribution range of Tanganicodus cf. irsacae that stretches over a distance of 35 km. Both markers detected significant genetic differentiation within and between the two species. T. cf. irsacae contained lower overall genetic variation than Eretmoduscyanostictus, possibly due to its more restricted range of distribution and its smaller effective population sizes. Complete fixation of Tanganicodus mtDNA haplotypes was observed in Eretmodus at two localities, while at two other localities some Tanganicodus individuals possessed Eretmodus mtDNA haplotypes. Taking into account the relatively large average sequence divergence of 6.2% between the two species, as well as the geographical distribution of mtDNA haplotypes in the lake, the observed pattern is more likely to be a consequence of asymmetric introgression than of shared ancestral polymorphism. As there is significant population differentiation between sympatric Tanganicodus and Eretmodus populations, the events of introgressions may have happened after secondary contact, but our data provide no evidence for ongoing gene flow and suggest that both species are reproductively isolated at present time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号