首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
By complementing two independent systematic studies published recently on the Western Australian land snail Amplirhagada, we compare levels of morphological variation in shells and genitalia with those in the mitochondrial markers cytochrome c oxidase (COI) and 16S to evaluate the utility of mtDNA markers for delimiting species. We found that penial morphology and mitochondrial divergence are generally highly consistent in delimiting species, while shells have little overall taxonomic utility in these snails. In addition to this qualitative correspondence, there is almost no overlap between intraspecific and interspecific genetic distances in COI, with the highest intraspecific and lowest interspecific distance being 6%. This value is twice the general level suggested as a DNA barcode threshold by some authors and higher than the best average found in stylommatophoran land snails. Although in Amplirhagada land snails DNA barcoding may provide meaningful information as a first‐pass approach towards species delimitation, we argue that this is due only to specific evolutionary circumstances that facilitated a long‐termed separate evolution of mitochondrial lineages along spatial patterns. However, because in general the amounts of morphological and mitochondrial differentiation of species depend on their evolutionary history and age, the mode of speciation, distributional patterns and ecological adaptations, and absence or presence of mechanisms that prevent gene flow across species limits, the applicability of DNA barcoding has to be confirmed by morphological studies for each single group anew. Based on evidence from both molecular and morphological markers, we describe six new species from the Bonaparte Archipelago and revise the taxonomy of a further two. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 337–362.  相似文献   

2.
In recent years, the number of sequences of diverse species submitted to GenBank has grown explosively and not infrequently the data contain errors. This problem is extensively recognized but not for invalid or incorrectly identified species, sample mixed-up, and contamination. DNA barcoding is a powerful tool for identifying and confirming species and one very important application involves forensics. In this study, we use DNA barcoding to detect erroneous sequences in GenBank by evaluating deep intraspecific and shallow interspecific divergences to discover possible taxonomic problems and other sources of error. We use the mitochondrial DNA gene encoding cytochrome b (Cytb) from turtles to test the utility of barcoding for pinpointing potential errors. This gene is widely used in phylogenetic studies of the speciose group. Intraspecific variation is usually less than 2.0% and in most cases it is less than 1.0%. In comparison, most species differ by more than 10.0% in our dataset. Overlapping intra- and interspecific percentages of variation mainly involve problematic identifications of species and outdated taxonomies. Further, we detect identical problems in Cytb from Insectivora and Chiroptera. Upon applying this strategy to 47,524 mammalian CoxI sequences, we resolve a suite of potentially problematic sequences. Our study reveals that erroneous sequences are not rare in GenBank and that the DNA barcoding can serve to confirm sequencing accuracy and discover problems such as misidentified species, inaccurate taxonomies, contamination, and potential errors in sequencing.  相似文献   

3.
This study examines the utility of morphology and DNA barcoding in species identification of freshwater fishes from north‐central Nigeria. We compared molecular data (mitochondrial cytochrome c oxidase subunit I (COI) sequences) of 136 de novo samples from 53 morphologically identified species alongside others in GenBank and BOLD databases. Using DNA sequence similarity‐based (≥97% cutoff) identification technique, 50 (94.30%) and 24 (45.30%) species were identified to species level using GenBank and BOLD databases, respectively. Furthermore, we identified cases of taxonomic problems in 26 (49.00%) morphologically identified species. There were also four (7.10%) cases of mismatch in DNA barcoding in which our query sequence in GenBank and BOLD showed a sequence match with different species names. Using DNA barcode reference data, we also identified four unknown fish samples collected from fishermen to species level. Our Neighbor‐joining (NJ) tree analysis recovers several intraspecific species clusters with strong bootstrap support (≥95%). Analysis uncovers two well‐supported lineages within Schilbe intermedius. The Bayesian phylogenetic analyses of Nigerian S. intermedius with others from GenBank recover four lineages. Evidence of genetic structuring is consistent with geographic regions of sub‐Saharan Africa. Thus, cryptic lineage diversity may illustrate species’ adaptive responses to local environmental conditions. Finally, our study underscores the importance of incorporating morphology and DNA barcoding in species identification. Although developing a complete DNA barcode reference library for Nigerian ichthyofauna will facilitate species identification and diversity studies, taxonomic revisions of DNA sequences submitted in databases alongside voucher specimens are necessary for a reliable taxonomic and diversity inventory.  相似文献   

4.
Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well‐supported clusters. Intraspecific Kimura 2‐parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra‐ and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.  相似文献   

5.
秋海棠属植物种类繁多,形态变异多样,导致种类的系统放置混乱,近缘种类鉴定困难。利用DNA条形码实现物种快速准确的鉴定技术具有不受形态特征约束的优势,为秋海棠属植物的分类鉴定提供了新的方法。本研究选择4个DNA条形码候选片段(rbcL,matK,trnH psbA,ITS)对中国秋海棠属26种136个个体进行了分析。结果显示:叶绿体基因rbcL,matK和trnH psbA种内和种间变异小,对秋海棠属植物的鉴别能力有限;ITS/ITS2种内和种间变异大,在本研究中物种正确鉴定率达到100%/96%,可考虑作为秋海棠属DNA条形码鉴定的候选片段。研究结果支持中国植物条形码研究组建议将核基因ITS/ITS2纳入种子植物DNA条形码核心片段中的观点。  相似文献   

6.
The second internal transcribed spacer (ITS2) of the nuclear ribosomal RNA cluster (rDNA) is significantly smaller in the Cnidaria (120–260 bp) than in the rest of the Metazoa. ITS2 is one of the fastest evolving DNA regions among those commonly used in molecular systematics and has been proposed as a possible barcoding gene for Cnidaria to replace the currently problematic mitochondrial sequences used. We have reviewed the intraspecific and interspecific variation of ITS2 rRNA sequences in the Anthozoa. We have observed that the lower limits of the interspecific DNA divergence ranges very often overlap with intraspecific ranges, and identical sequences from individuals of different species are not rare. This finding can result in problems similar to those encountered with the mitochondrial COI, and we conclude that ITS2 does not prove significantly better than COI for standard taxonomic DNA barcoding in Anthozoa. However, ITS2 appears to be a promising gene in the ecological DNA barcoding of corallivory, where taxonomic accuracy at genus or even family level may represent a significant improvement of current knowledge. We have successfully amplified and sequenced ITS2 from template DNA extracted from foot muscle and from stomach contents of corallivorous gastropods, and from their anthozoan hosts. The small size of cnidarian ITS2 makes it a very easy and efficient tool for ecological barcoding of associations. Ecological barcoding of corallivory is an indispensable approach to the study of the associations in deep water, where direct observation is severely limited by logistics and costs.  相似文献   

7.
Parasitoid wasps have received a great deal of attention in the biological control of melon-cotton aphid (Aphis gossypii Glover). The species of parasitoids are often difficult to identify because of their small body size and profound diversity. DNA barcoding offers scientists who are not expert taxonomists a powerful tool to render their field studies more accurate. Using DNA barcodes to identify aphid parasitoid wasps in specific cropping systems may provide valuable information for biological control. Here, we report the use of DNA barcoding to confirm the morphological identification of 14 species (belonging to 13 genera of 7 families) of parasitoid wasps from two-year field samples in a watermelon cropping system. We generated DNA sequences from the mitochondrial COI gene and the nuclear D2 region of 28S rDNA to assess the genetic variation within and between parasitoid species. Automatic Barcode Gap Discovery (ABGD) supported the presence of 14 genetically distinct groups in the dataset. Among the COI sequences, we found no overlap between the maximum K2P distance within species (0.49%) and minimum distance between species (6.85%). The 28S sequences also showed greater interspecific distance than intraspecific distance. DNA barcoding confirmed the morphological identification. However, inconsistency and ambiguity of taxonomic information available in the online databases has limited the successful use of DNA barcoding. Only five species matched those in the BOLD and GenBank. Four species did not match the entries in GenBank and five species showed ambiguous results in BOLD due to confusing nomenclature. We suggested that species identification based on DNA barcodes should be performed using both COI and other genes. Nonetheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to provide a foundation for studies aimed at improving the understanding of the biocontrol services provided by parasitoids in the melon ecosystem.  相似文献   

8.
The mitochondrial cytochrome c oxidase I (cox1) gene has been promoted as a universal reference gene, or barcode, to identify organisms to the species level. We evaluated whether cox1 would be appropriate to diagnose cetacean species. The 5′ end of cox1 (686 base pairs, bp) was sequenced for 46 of 86 recognized species of cetaceans. In addition, we included 105 sequences from GenBank, increasing our taxonomic coverage to 61 species. Particular focus was placed on sampling two subfamilies that contain closely related taxa: the Delphininae and the Globicephalinae. Species‐specific sequences were observed for all but three taxa (Delphinus delphis, D. capensis, and Stenella coeruleoalba). Although correct assignment was seen for most species, significant overlap between intra‐ and interspecific variation makes cox1 an imperfect barcode for cetaceans. The efficacy of cox1 was compared to the 5′ end of the cytochrome b (cytb) gene, a mitochondrial region routinely used for cetacean species identification. Although cytb performed better than cox1 for some species, this marker could not differentiate other closely related taxa (Eubalaena spp.). Species identification for taxa not reliably identified using cox1 or cytb might be best addressed through use of multiple mitochondrial DNA fragments or other newly developed markers.  相似文献   

9.
悬钩子属DNA条形码通用序列的初步筛选   总被引:1,自引:0,他引:1  
为了建立悬钩子属(Rubus)植物的DNA条形码分子鉴定技术,筛选获得适用于悬钩子属植物的通用条形码序列。该研究基于GenBank数据对ITS、ITS2、matK、rbcL、trnH-psbA、trnL-trnF 6个DNA条形码序列进行了遗传变异、barcoding gap、建树等评估分析。结果显示,trnH-psbA、matK、rbcL、rtnL-trnF的种内变异与种间变异差异较大,变异分辨率分别为97.32%、83.33%、79.07%、64.95%,存在较大的barcoding gap;NJ一致树分析显示,matK的单系性比例最高(67%),其次为trnH-psbA(64%),rtnL-trnF(43%),rbcL(30%)。结果表明,悬钩子属植物的matKtrnH-psbA序列种内变异与种间变异差异较大,能较好地区分不同物种,具有较大的鉴定潜力。建议将matKtrnH-psbA作为悬钩子属植物鉴定的核心条形码序列,rtnL-trnF、rbcL作为辅助条形码序列。  相似文献   

10.
Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.  相似文献   

11.

Background

DNA barcoding, i.e. the use of a 648 bp section of the mitochondrial gene cytochrome c oxidase I, has recently been promoted as useful for the rapid identification and discovery of species. Its success is dependent either on the strength of the claim that interspecific variation exceeds intraspecific variation by one order of magnitude, thus establishing a "barcoding gap", or on the reciprocal monophyly of species.

Results

We present an analysis of intra- and interspecific variation in the butterfly family Lycaenidae which includes a well-sampled clade (genus Agrodiaetus) with a peculiar characteristic: most of its members are karyologically differentiated from each other which facilitates the recognition of species as reproductively isolated units even in allopatric populations. The analysis shows that there is an 18% overlap in the range of intra- and interspecific COI sequence divergence due to low interspecific divergence between many closely related species. In a Neighbour-Joining tree profile approach which does not depend on a barcoding gap, but on comprehensive sampling of taxa and the reciprocal monophyly of species, at least 16% of specimens with conspecific sequences in the profile were misidentified. This is due to paraphyly or polyphyly of conspecific DNA sequences probably caused by incomplete lineage sorting.

Conclusion

Our results indicate that the "barcoding gap" is an artifact of insufficient sampling across taxa. Although DNA barcodes can help to identify and distinguish species, we advocate using them in combination with other data, since otherwise there would be a high probability that sequences are misidentified. Although high differences in DNA sequences can help to identify cryptic species, a high percentage of well-differentiated species has similar or even identical COI sequences and would be overlooked in an isolated DNA barcoding approach.  相似文献   

12.
Some taxonomic groups are less amenable to mitochondrial DNA barcoding than others. Due to the paucity of molecular information of understudied groups and the huge molecular diversity within flatworms, primer design has been hampered. Indeed, all attempts to develop universal flatworm-specific COI markers have failed so far. We demonstrate how high molecular variability and contamination problems limit the possibilities for barcoding using standard COI-based protocols in flatworms. As a consequence, molecular identification methods often rely on other widely applicable markers. In the case of Monogenea, a very diverse group of platyhelminth parasites, and Rhabdocoela, representing one-fourth of all free-living flatworm taxa, this has led to a relatively high availability of nuclear ITS and 18S/28S rDNA sequences on GenBank. In a comparison of the effectiveness in species assignment we conclude that mitochondrial and nuclear ribosomal markers perform equally well. In case intraspecific information is needed, rDNA sequences can guide the selection of the appropriate (i.e. taxon-specific) COI primers if available.  相似文献   

13.
DNA barcoding was used in the identification of 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. A total of 1765 DNA barcodes using a 654‐bp‐long fragment of the mitochondrial cytochrome c oxidase subunit I gene were generated for 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. These species belong to 70 genera, 40 families and 19 orders from class Actinopterygii, and all were associated with a distinct DNA barcode. Nine and 12 of the COI barcode clusters represent the first species records submitted to the BOLD and GenBank databases, respectively. All COI barcodes (except sequences of first species records) were matched with reference sequences of expected species, according to morphological identification. Average nucleotide frequencies of the data set were calculated as T = 29.7%, C = 28.2%, A = 23.6% and G = 18.6%. Average pairwise genetic distance among individuals were estimated as 0.32%, 9.62%, 17,90% and 22.40% for conspecific, congeneric, confamilial and within order, respectively. Kimura 2‐parameter genetic distance values were found to increase with taxonomic level. For most of the species analysed in our data set, there is a barcoding gap, and an overlap in the barcoding gap exists for only two genera. Neighbour‐joining trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at species level. Results of this study supported DNA barcoding as an efficient molecular tool for a better monitoring, conservation and management of fisheries.  相似文献   

14.
【目的】本研究旨在探讨DNA条形码对中国蛛缘蝽科(半翅目:缘蝽总科)物种界定的适用性。【方法】对中国蛛缘蝽科13属23种207个样本的线粒体COI基因DNA条形码序列进行扩增,并扩增稻缘蝽属Leptocorisa 3个物种的31条内转录间隔区1(ITS-1)序列作为辅助标记。使用MEGA 11软件计算种间和种内遗传距离(Kimura 2-parameter, K2P);采用邻接法(neighbor-joining, NJ)进行物种聚类分析;利用中介邻接网络算法构建单倍型网络图。【结果】基于线粒体COI DNA条形码序列得出测试的中国蛛缘蝽科所有23个种的种内平均K2P距离在2%以下,种间K2P距离在0.98%~23.98%之间(平均17.50%)。多数物种彼此能够被较好地分开,且支持率较高。其中,中稻缘蝽Leptocorisa chinensis和大稻缘蝽L. oratoria共享部分COI单倍型,造成COI条形码无法区分二者,可通过ITS-1序列在单倍型网络分析中将二者区分。【结论】本研究得出的中国蛛缘蝽科中绝大部分物种的DNA条形码数据分析结果与基于形态特征的分类单元一致。然而,对于其中亲缘关系极近的物种,单靠线粒体数据尤其是COI条形码序列无法进行准确界定,需引入其他DNA序列或其他类型数据进行区分。  相似文献   

15.
Abstract.  We describe a new species of Halys Fabricius (Pentatomidae: Pentatominae: Halyini) based on morphological and DNA sequence data, and demonstrate the value of DNA sequences for taxonomic problems that are difficult to resolve on the basis of morphology alone. Halys sindillus Memon, Meier & Manan, sp.n. varies with regard to characters that are usually constant within the genus (spermathecal bulb of females; blade of male clasper; ratio between the second and third antennomeres; length of labium). The surprising levels of variation raised the question as to how many species were represented in three series of specimens from Pakistan. Because the morphological variability was largely continuous, we hypothesized the presence of one new species, and confirm this result here using sequence data from two mitochondrial markers. The data reveal very little molecular variation within the newly described species (COI: 730 bp: 0–0.16%; COI/tRNALeu/COII: 563 bp: 0–0.36%), that is, morphology and DNA sequences show very different patterns of variability. The new species is compared with the closely related Halys sulcatus (Thunberg) whose sequences are distinctly different and whose spermathecal bulbs are largely invariable (I: 2.87–3.28%; II: 2.13–2.49%). We discuss the shortcomings of mitochondrial data in taxonomy and compare the genetic distances in Halys with frequency distributions of intra- and interspecific distances obtained for all 878 Hemiptera COI sequences in GenBank. We conclude that the observed distances for Halys are consistent with our taxonomic conclusions, thus demonstrating the usefulness of DNA sequences for Halys taxonomy. However, the observed overlap between intra- and interspecific sequence variability in Hemiptera is so wide that it questions the feasibility of approaches to taxonomy based predominantly on DNA sequences (e.g. DNA taxonomy, DNA barcoding).  相似文献   

16.
The widespread assumption that COI and other mitochondrial genes will be ineffective DNA barcodes for anthozoan cnidarians has not been well tested for most anthozoans other than scleractinian corals. Here we examine the limitations of mitochondrial gene barcoding in the sub-class Octocorallia, a large, diverse, and ecologically important group of anthozoans. Pairwise genetic distance values (uncorrected p) were compared for three candidate barcoding regions: the Folmer region of COI; a fragment of the octocoral-specific mitochondrial protein-coding gene, msh1; and an extended barcode of msh1 plus COI with a short, adjacent intergenic region (igr1). Intraspecific variation was <0.5%, with most species exhibiting no variation in any of the three gene regions. Interspecific divergence was also low: 18.5% of congeneric morphospecies shared identical COI barcodes, and there was no discernible barcoding gap between intra- and interspecific p values. In a case study to assess regional octocoral biodiversity, COI and msh1 barcodes each identified 70% of morphospecies. In a second case study, a nucleotide character-based analysis correctly identified 70% of species in the temperate genus Alcyonium. Although interspecific genetic distances were 2× greater for msh1 than COI, each marker identified similar numbers of species in the two case studies, and the extended COI + igr1 + msh1 barcode more effectively discriminated sister taxa in Alcyonium. Although far from perfect for species identification, a COI + igr1 + msh1 barcode nonetheless represents a valuable addition to the depauperate set of characters available for octocoral taxonomy.  相似文献   

17.
The philosophical basis and utility of DNA barcoding have been a subject of numerous debates. While most literature embraces it, some studies continue to question its use in dipterans, butterflies and marine gastropods. Here, we explore the utility of DNA barcoding in identifying spider species that vary in taxonomic affiliation, morphological diagnosibility and geographic distribution. Our first test searched for a ‘barcoding gap’ by comparing intra‐ and interspecific means, medians and overlap in more than 75 000 computed Kimura 2‐parameter (K2P) genetic distances in three families. Our second test compared K2P distances of congeneric species with high vs. low morphological distinctness in 20 genera of 11 families. Our third test explored the effect of enlarging geographical sampling area at a continental scale on genetic variability in DNA barcodes within 20 species of nine families. Our results generally point towards a high utility of DNA barcodes in identifying spider species. However, the size of the barcoding gap strongly depends on taxonomic groups and practices. It is becoming critical to define the barcoding gap statistically more consistently and to document its variation over taxonomic scales. Our results support models of independent patterns of morphological and molecular evolution by showing that DNA barcodes are effective in species identification regardless of their morphological diagnosibility. We also show that DNA barcodes represent an effective tool for identifying spider species over geographic scales, yet their variation contains useful biogeographic information.  相似文献   

18.
Identifying life stages of species with complex life histories is problematic as species are often only known and/or described from a single stage. DNA barcoding has been touted as an important tool for linking life-history stages of the same species. To test the current efficacy of DNA barcodes for identifying unknown mollusk life stages, 24 marine gastropod egg capsules were collected off the Philippines in deep water and sequenced for partial fragments of the COI, 16S and 12S mitochondrial genes. Two egg capsules of known shallow-water Mediterranean species were used to calibrate the method. These sequences were compared to those available in GenBank and the Barcode of Life Database (BOLD). Using COI sequences alone, only a single Mediterranean egg capsule was identified to species, and a single Philippine egg capsule was identified tentatively to genus; all other COI sequences recovered matches between 76% and 90% with sequences from BOLD and GenBank. Similarity-based identification using all three markers confirmed the Mediterranean specimens' identifications. A phylogenetic approach was also implemented to confirm similarity-based identifications and provide a higher-taxonomic identification when species-level identifications were not possible. Comparison of available GenBank sequences to the diversity curve of a well-sampled coral reef habitat in New Caledonia highlights the poor taxonomic coverage achieved at present in existing genetic databases, emphasizing the need to develop DNA barcoding projects for megadiverse and often taxonomically challenging groups such as mollusks, to fully realize its potential as an identification and discovery tool.  相似文献   

19.
DNA barcoding was used to identify crab larvae from the Marine Biological Reserve of Arvoredo, encompassing a coastal archipelago off the SW Atlantic coast (27°S, 48°W). Partial mitochondrial COI or 16S rRNA gene sequences were obtained for 488 larvae, leading to the identification of 20 species. The COI sequences generated 13 barcode index numbers (BINs) within Barcode of Life Data Systems (BOLD), among which 11 were concordant with single species. DNA from ~ 6% of the larvae did not amplify using the primers tested; based on external morphological characteristics, these larvae represented four possible additional operational taxonomic units (OTUs) at the family level. Intraspecific variation for the COI and 16S rRNA genes was found to be < 2.6% and < 2.1% respectively (Kimura 2-parameter distance), whereas interspecific divergence ranged from 7.9% to 21.5% and 6.4% to 14.5%, respectively. These results imply that both genes are suitable for use in species identification of brachyuran crabs of this area. Molecular identification of this group successfully enabled the diagnosis of larvae of closely related species, including congeners in Mithrax, Achelous and Callinectes. In addition, eight out of 20 species recognized represent new records for the reserve suggesting that the brachyuran fauna in the area has been underestimated based on traditional biodiversity measures. The availability of primers suited to the targeted species, and the development of a taxonomically comprehensive DNA barcoding database are the major recommendations to improve the accuracy and feasibility of using DNA barcoding for species identification of SW Atlantic brachyuran crabs.  相似文献   

20.
为弥补传统形态分类方法的不足,探究应用DNA条形码技术进行分子生物学鉴定的可行性,本研究用DNA条形码技术检测了青海省海东地区3目6科14属18种110只小型兽类的COI基因部分序列。分析所测COI基因序列可知:种内遗传距离≤3%,种间遗传距离5-10%,属间遗传距离12-19%,种间遗传距离显著大于种内遗传距离。NJ树显示同种个体聚为有很高支持度的单一分支。有6个个体(4只黄胸鼠、2只小家鼠)在现场鉴定中被误定为其他种类。研究结果表明使用条形码技术能纠正形态学鉴定中的错误,也说明动物线粒体COI基因是一个有效的DNA条形码标准基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号