首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The entry of T cell progenitors to the thymus marks the beginning of a multistage developmental process that culminates in the generation of self-MHC-restricted CD4(+) and CD8(+) T cells. Although multiple factors including the chemokine receptors CCR7 and CCR9 are now defined as important mediators of progenitor recruitment and colonization in both the fetal and adult thymi, the heterogeneity of thymus-colonizing cells that contribute to development of the T cell pool is complex and poorly understood. In this study, in conjunction with lineage potential assays, we perform phenotypic and genetic analyses on thymus-settling progenitors (TSP) isolated from the embryonic mouse thymus anlagen and surrounding perithymic mesenchyme, including simultaneous gene expression analysis of 14 hemopoietic regulators using single-cell multiplex RT-PCR. We show that, despite the known importance of CCL25-CCR9 mediated thymic recruitment of T cell progenitors, embryonic PIR(+)c-Kit(+) TSP can be subdivided into CCR9(+) and CCR9(-) subsets that differ in their requirements for a functional thymic microenvironment for thymus homing. Despite these differences, lineage potential studies of purified CCR9(+) and CCR9(-) TSP reveal a common bias toward T cell-committed progenitors, and clonal gene expression analysis reveals a genetic consensus that is evident between and within single CCR9(+) and CCR9(-) TSP. Collectively, our data suggest that although the earliest T cell progenitors may display heterogeneity with regard to their requirements for thymus colonization, they represent a developmentally homogeneous progenitor pool that ensures the efficient generation of the first cohorts of T cells during thymus development.  相似文献   

2.
Characterization of thymic progenitors in adult mouse bone marrow   总被引:5,自引:0,他引:5  
Thymic cellularity is maintained throughout life by progenitor cells originating in the bone marrow. In this study, we describe adult mouse bone cells that exhibit several features characteristic of prothymocytes. These include 1) rapid thymic engraftment kinetics following i.v. transplantation, 2) dramatic expansion of thymic progeny, and 3) limited production of hemopoietic progeny other than thymocytes. The adult mouse bone marrow population that is depleted of cells expressing any of a panel of lineage-specific Ags, stem cell Ag-1 positive, and not expressing the Thy1.1 Ag (Thy1.1(-)) (Thy1.1(-) progenitors) can repopulate the thymus 9 days more rapidly than can hemopoietic stem cells, a rate of thymic repopulation approaching that observed with transplanted thymocytes. Additionally, Thy1.1(-) progenitors expand prolifically to generate thymocyte progeny comparable in absolute numbers to those observed from parallel hemopoietic stem cell transplants, and provide a source of progenitors that spans multiple waves of thymic seeding. Nevertheless, the Thy1.1(-) population yields relatively few B cells and rare myeloid progeny posttransplant. These observations describe the phenotype of an adult mouse bone marrow population highly enriched for rapidly engrafting, long-term thymocyte progenitors. Furthermore, they note disparity in B and T cell expansion from this lymphoid progenitor population and suggest that it contains the progenitor primarily responsible for seeding the thymus throughout life.  相似文献   

3.
4.
Bone marrow cells from autoimmune-prone New Zealand Black (NZB) mice are less efficient at colonizing fetal thymic lobes than cells from normal strains. This study demonstrates that the reduced capacity of NZB bone marrow cells to repopulate the thymus does not result from their inability to migrate to or enter the thymus. Rather, the T lymphopoietic defect of NZB mice is due to an impaired ability of pluripotent hematopoietic stem cells (PHSCs) to generate more committed lymphoid progeny, which could include common lymphoid precursors and/or other T cell-committed progenitors. Although PHSCs from NZB mice were not as efficient at thymic repopulation as comparable numbers of PHSCs from control strains, the ability of common lymphoid precursors from NZB mice to repopulate the thymus was not defective. Similarly, more differentiated NZB T cell precursors included in the intrathymic pool of CD4(-)CD8(-) cells also exhibited normal T lymphopoietic potential. Taken together, the results identify an unappreciated defect in NZB mice and provide further evidence that generation of lymphoid progeny from the PHSCs is a regulated event.  相似文献   

5.
Forkhead box P3 (FoxP3)-positive T cells are a specialized T cell subset for immune regulation and tolerance. We investigated the trafficking receptor switches of FoxP3(+) T cells in thymus and secondary lymphoid tissues and the functional consequences of these switches in migration. We found that FoxP3(+) T cells undergo two discrete developmental switches in trafficking receptors to migrate from primary to secondary and then to nonlymphoid tissues in a manner similar to conventional CD4(+) T cells as well as unique to the FoxP3(+) cell lineage. In the thymus, precursors of FoxP3(+) cells undergo the first trafficking receptor switch (CCR8/CCR9-->CXCR4-->CCR7), generating mostly homogeneous CD62L(+)CCR7(+)CXCR4(low)FoxP3(+) T cells. CXCR4 expression is regained in FoxP3(+) thymic emigrants in the periphery. Consistent with this switch, recent FoxP3(+) thymic emigrants migrate exclusively to secondary lymphoid tissues but poorly to nonlymphoid tissues. The FoxP3(+) thymic emigrants undergo the second switch in trafficking receptors for migration to nonlymphoid tissues upon Ag priming. This second switch involves down-regulation of CCR7 and CXCR4 but up-regulation of a number of memory/effector type homing receptors, resulting in generation of heterogeneous FoxP3(+) T cell subsets expressing various combinations of trafficking receptors including CCR2, CCR4, CCR6, CCR8, and CCR9. A notable difference between the FoxP3(+) and FoxP3(-) T cell populations is that FoxP3(+) T cells undergo the second homing receptor switch at a highly accelerated rate compared with FoxP3(-) T cells, generating FoxP3(+) T cells with unconventionally efficient migratory capacity to major nonlymphoid tissues.  相似文献   

6.
Two human CC chemokines, SLC/6Ckine/Exodus2/TCA4 and CKbeta-11/MIP-3beta/ELC, are previously reported as efficacious chemoattractants for T- and B-cells and dendritic cells. SLC and CKbeta-11 share only 32% amino acid identity, but are ligands for the same chemokine receptor, CCR7. In this study, we examined chemotactic activity of SLC and CKbeta-11 for NK cells and lymphoid progenitors in bone marrow and thymus. It was found that these two CCR7 ligands are chemoattractants for neonatal cord blood and adult peripheral blood NK cells and cell lines. SLC and CKbeta-11 preferentially attract the CD56(+)CD16(-) NK cell subset over CD56(+)CD16(+) NK cells. SLC and CKbeta-11 also demonstrate selective chemotactic activity on late stage CD34(-)CD19(+)IgM- B-cell progenitors and CD4(+) and CD8(+) single-positive thymocytes, but not early stage progenitors. It was noted that SLC is an efficient desensitizer of CKbeta-11-dependent NK cell chemotaxis, while CKbeta-11 is a weak desensitizer of SLC-dependent chemotaxis. Taken together, these results suggest that SLC and CKbeta-11 have the potential to control trafficking of NK cell subsets and late stage lymphoid progenitors in bone marrow and thymus.  相似文献   

7.
《The Journal of cell biology》1994,127(6):1743-1754
Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c- MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU- GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.  相似文献   

8.
Whereas the critical roles of innate lymphoid cells (ILCs) in adult are increasingly appreciated, their developmental hierarchy in early human fetus remains largely elusive. In this study, we sorted human hematopoietic stem/progenitor cells, lymphoid progenitors, putative ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 post-conception weeks, for single-cell RNA-sequencing, followed by computational analysis and functional validation at bulk and single-cell levels. We delineated the early phase of ILC lineage commitment from hematopoietic stem/progenitor cells, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor as a surface marker for the lymphoid progenitors in fetal liver with T, B, ILC and myeloid potentials, while IL-3RA lymphoid progenitors were predominantly B-lineage committed. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the proliferating characteristics shared by the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2 CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.Subject terms: Innate immunity, Haematopoietic stem cells  相似文献   

9.
The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.  相似文献   

10.
Deficient thymopoiesis and retarded recovery of newly developed CD4(+) T cells is one of the most important determinants of impaired immunocompetence after hemopoietic stem cell transplantation. Here we evaluated whether Fms-like tyrosine kinase 3 (Flt3) ligand (FL) alone or combined with IL-7 affects T cell recovery, thymopoiesis, and lymphoid progenitor expansion following bone marrow transplantation in immunodeficient mice. FL strongly accelerated and enhanced the recovery of peripheral T cells after transplantation of a low number of bone marrow cells. An additive effect on T cell recovery was not observed after coadministration of IL-7. Lineage(-)sca-1(+)c-kit(+)flt3(+) lymphoid progenitor cell numbers were significantly increased in bone marrow of FL-treated mice before recovery of thymopoiesis. Thymocyte differentiation was advanced to more mature stages after FL treatment. Improved T cell recovery resulted in better immunocompetence against a post-bone marrow transplantation murine CMV infection. Collectively, our data suggest that FL promotes T cell recovery by enhanced thymopoiesis and by expansion of lymphoid progenitors.  相似文献   

11.
Integrin alphaIIb is a cell adhesion molecule expressed in association with beta3 by cells of the megakaryocytic lineage, from committed progenitors to platelets. While it is clear that lymphohemopoietic cells differentiating along other lineages do not express this molecule, it has been questioned whether mammalian hemopoietic stem cells (HSC) and various progenitor cells express it. In this study, we detected alphaIIb expression in midgestation embryo in sites of HSC generation, such as the yolk sac blood islands and the hemopoietic clusters lining the walls of the major arteries, and in sites of HSC migration, such as the fetal liver. Since c-Kit, which plays an essential role in the early stages of hemopoiesis, is expressed by HSC, we studied the expression of the alphaIIb antigen in the c-Kit-positive population from fetal liver and adult bone marrow differentiating in vitro and in vivo into erythromyeloid and lymphocyte lineages. Erythroid and myeloid progenitor activities were found in vitro in the c-Kit(+)alphaIIb(+) cell populations from both origins. On the other hand, a T cell developmental potential has never been considered for c-Kit(+)alphaIIb(+) progenitors, except in the avian model. Using organ cultures of embryonic thymus followed by grafting into athymic nude recipients, we demonstrate herein that populations from murine fetal liver and adult bone marrow contain T lymphocyte progenitors. Migration and maturation of T cells occurred, as shown by the development of both CD4(+)CD8- and CD4-CD8(+) peripheral T cells. Multilineage differentiation, including the B lymphoid lineage, of c-Kit(+)alphaIIb(+) progenitor cells was also shown in vivo in an assay using lethally irradiated congenic recipients. Taken together, these data demonstrate that murine c-Kit(+)alphaIIb(+) progenitor cells have several lineage potentialities since erythroid, myeloid, and lymphoid lineages can be generated.  相似文献   

12.
Cutting edge: Natural helper cells derive from lymphoid progenitors   总被引:1,自引:0,他引:1  
Natural helper (NH) cells are recently discovered innate immune cells that confer protective type 2 immunity during helminth infection and mediate influenza-induced airway hypersensitivity. Little is known about the ontogeny of NH cells. We report in this study that NH cells derive from bone marrow lymphoid progenitors. Using RAG-1Cre/ROSA26(YFP) mice, we show that most NH cells are marked with a history of RAG-1 expression, implying lymphoid developmental origin. The development of NH cells depends on the cytokine receptor Flt3, which is required for the efficient generation of bone marrow lymphoid progenitors. Finally, we demonstrate that lymphoid progenitors, but not myeloid-erythroid progenitors, give rise to NH cells in vivo. This work therefore expands the lymphocyte family, currently comprising T, B, and NK cells, to include NH cells as another type of innate lymphocyte that derives from bone marrow lymphoid progenitors.  相似文献   

13.
We recently described that T cell specification in mice deficient in the Hedgehog (Hh) receptor Patched (Ptch) is blocked at the level of the common lymphoid progenitor in the bone marrow (BM). Adoptive transfer of wild-type BM in Ptch-deficient mice provides evidence that T cell development strictly depends on Ptch expression in the nonhematopoietic compartment. Transplantation experiments using BM deficient in the glucocorticoid receptor exclude any involvement of the stress hormone corticosterone in our model. Using cell-type-specific knockout mice, we show that T cell development is independent of T cell-intrinsic Ptch expression. Furthermore, Ptch expression by the thymus stroma is dispensable, as revealed by fetal thymus organ culture and thymus transplantation. In contrast, analysis of the earliest thymic progenitors in Ptch-deficient mice indicated that Ptch is required for the development or supply of thymic homing progenitors that give rise to earliest thymic progenitors. Collectively, our findings identified Ptch as an exclusive T cell-extrinsic factor necessary for proper development of T cells at their prethymic stage. This observation may be important for current considerations using Hh inhibitors upstream of Ptch in diseases accompanied by aberrant Hh signaling.  相似文献   

14.
15.
T cells undergo chemokine receptor switches during activation and differentiation in secondary lymphoid tissues. Here we present evidence that dendritic cells can induce changes in T cell expression of chemokine receptors in two continuous steps. In the first switch over a 4-5 day period, dendritic cells up-regulate T cell expression of CXCR3 and CXCR5. Additional stimulation leads to the second switch: down-regulation of lymphoid tissue homing related CCR7 and CXCR5, and up-regulation of Th1/2 effector tissue-targeting chemoattractant receptors such as CCR4, CCR5, CXCR6, and CRTH2. We show that IL-4 and IL-12 can determine the fate of the secondary chemokine receptor switch. IL-4 enhances the generation of CCR4(+) and CRTH2(+) T cells, and suppresses the generation of CXCR3(+) T cells and CCR7(-) T cells, while IL-12 suppresses the level of CCR4 in responding T cells. Furthermore, IL-4 has positive effects on generation of CXCR5(+) and CCR7(+) T cells during the second switch. Our study suggests that the sequential switches in chemokine receptor expression occur during naive T cell interaction with dendritic cells. The first switch of T cell chemokine receptor expression is consistent with the fact that activated T cells migrate within lymphoid tissues for interaction with B and dendritic cells, while the second switch predicts the trafficking behavior of effector T cells away from lymphoid tissues to effector tissue sites.  相似文献   

16.
Most NK1.1+ T (NKT) cells express a biased TCRalphabeta repertoire that is positively selected by the monomorphic MHC class I-like molecule CD1d. The development of CD1d-dependent NKT cells is thymus dependent but, in contrast to conventional T cells, requires positive selection by cells of hemopoietic origin. Here, we show that the Src protein tyrosine kinase Fyn is required for development of CD1d-dependent NKT cells but not for the development of conventional T cells. In contrast, another Src kinase, Lck, is required for the development of both NKT and T cells. Impaired NKT cell development in Fyn-deficient mice cannot be rescued by transgenic expression of CD8, which is believed to increase the avidity of CD1d recognition by NKT cells. Taken together, our data reveal a selective and nonredundant role for Fyn in NKT cell development.  相似文献   

17.
FLT3/FLK2, a member of the receptor tyrosine kinase family, plays a critical role in maintenance of hematopoietic homeostasis, and the constitutively active form of the FLT3 mutation is one of the most common genetic abnormalities in acute myelogenous leukemia. In murine hematopoiesis, Flt3 is not expressed in self-renewing hematopoietic stem cells, but its expression is restricted to the multipotent and the lymphoid progenitor stages at which cells are incapable of self-renewal. We extensively analyzed the expression of Flt3 in human (h) hematopoiesis. Strikingly, in both the bone marrow and the cord blood, the human hematopoietic stem cell population capable of long-term reconstitution in xenogeneic hosts uniformly expressed Flt3. Furthermore, human Flt3 is expressed not only in early lymphoid progenitors, but also in progenitors continuously along the granulocyte/macrophage pathway, including the common myeloid progenitor and the granulocyte/macrophage progenitor. We further found that human Flt3 signaling prevents stem and progenitors from spontaneous apoptotic cell death at least through up-regulating Mcl-1, an indispensable survival factor for hematopoiesis. Thus, the distribution of Flt3 expression is considerably different in human and mouse hematopoiesis, and human FLT3 signaling might play an important role in cell survival, especially at stem and progenitor cells that are critical cellular targets for acute myelogenous leukemia transformation.  相似文献   

18.
T cell differentiation in the thymus depends on sequential interactions between lymphoid progenitors and stromal cells in discrete regions of the cortex. Here we show that CXCL12/CXCR4 signaling is absolutely required for proper localization of early progenitors into the cortex and thus for successful steady state differentiation. All early progenitors in the thymus express CXCR4, and its ligand (CXCL12) is expressed only by stromal cells in the cortex, where early progenitors are found. Early progenitors migrate in response to CXCL12 in vitro, while thymus-specific deletion of CXCR4 in vivo results in failed cortical localization and developmental arrest. These findings indicate a crucial and nonredundant role for CXCR4 in facilitating localization of early lymphoid progenitors to tissue regions of the thymus, where lineage commitment and proliferation are controlled.  相似文献   

19.
We investigated the developmental potential of hemopoietic progenitors in the aorta-gonad-mesonephros (AGM) region, where the definitive type hemopoietic progenitors have been shown to emerge before the fetal liver develops. By using an assay system that is able to determine the developmental potential of individual progenitors toward the T, B, and myeloid lineages, we show that not only multipotent progenitors but also progenitors committed to the T, B, or myeloid lineage already exist in this region of day 10 fetuses. Bipotent progenitors generating myeloid and T cells or those generating myeloid and B cells were also detected, suggesting that the commitment to T and B cell lineages is in progress in the AGM region. The numbers of these progenitors, however, were only 1/200-1/1000 of those in fetal liver of day 12 fetuses. Such small numbers of progenitors suggest that hemopoiesis has just started in the AGM region of day 10 fetuses. Although most of T cell lineage-committed progenitors in the AGM region generated only a small number of immature T cells, some were able to generate a large number of mature T cells. The detection of various types of lineage-committed progenitors strongly suggests that the AGM region is not only the site of stem cell emergence, but also the site of hemopoiesis, including lineage commitment. The T cell progenitors found in the AGM region may represent the first immigrants to the thymus anlage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号