首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate reductase from Escherichia coli, purified to homogeneity after release from membranes by deoxycholate treatment, was composed of two subunits of 155,000 (α) and 58,000 (β) daltons and contained no cytochrome b1. Analysis of fractions at different stages of purification by gel electrophoresis and immunoprecipitation revealed that during the early steps of the purification cytochrome b1 dissociated from the enzyme and the β subunit was altered in size as determined by sodium dodecyl sulfate-gel electrophoresis. Analysis of the peptide patterns obtained by partial proteolysis of isolated α and β subunits established that these subunits are composed of distinct sequences and ruled out a precursor-product relationship between the two subunits. The β subunit was altered during the purification by loss of a 2000-dalton fragment, apparently from its carboxyl terminus. The protease inhibitor tosyllysine chloromethylketone protected nitrate reductase from more extensive degradation by endogenous proteases during the purification but did not prevent the removal of the 2000-dalton fragment. This carboxyl terminal fragment was part of a 15,000-dalton sequence which was removed by trypsin and which was required for the self-associating character of the unmodified enzyme monomers. From the structural changes which occurred during the purification procedure, it is proposed that the carboxyl terminal segment of the β subunit is involved in the binding of nitrate reductase to cytochrome b1 and its association with the membrane.  相似文献   

2.
A cytosolic form of dihydroxyacetone phosphate (DHAP) reductase was purified 200,000-fold from spinach (Spinacia oleracea L.) leaves to apparent electrophoretic homogeneity. The purification procedure included anion-exchange chromatography, gel filtration, hydrophobic chromatography, and dye-ligand chromatography on Green-A and Red-A agaroses. The enzyme, prepared in an overall yield of 14%, had a final specific activity of about 500 μmol of DHAP reduced min−1 mg−1 protein, a subunit molecular mass of 38 kD, and a native molecular mass of 75 kD. A chloroplastic isoform of DHAP reductase was separated from the cytosolic form by anion-exchange chromatography and partially purified 56,000-fold to a specific activity of 135 μmol min−1 mg−1 protein. Antibodies generated in rabbits against the cytosolic form did not cross-react with the chloroplastic isoform. The two reductases were specific for NADH and DHAP. Although they exhibited some dissimilarities, both isoforms were severely inhibited by higher molecular weight fatty acyl coenzyme A esters and phosphohydroxypyruvate and moderately inhibited by nucleotides. In contrast to previous reports, the partially purified chloroplastic enzyme was not stimulated by dithiothreitol or thioredoxin, nor was the purified cytosolic enzyme stimulated by fructose 2,6-bisphosphate. A third DHAP reductase isoform was isolated from spinach leaf peroxisomes that had been prepared by isopycnic sucrose density gradient centrifugation. The peroxisomal DHAP reductase was sensitive to antibodies raised against the cytosolic enzyme and had a slightly smaller subunit molecular weight than the cytosolic isoform.  相似文献   

3.
Two nitrate reductases, nitrate reductase A and nitrate reductase Z, exist in Escherichia coli. The nitrate reductase Z enzyme has been purified from the membrane fraction of a strain which is deleted for the operon encoding the nitrate reductase A enzyme and which harbours a multicopy plasmid carrying the nitrate reductase Z structural genes; it was purified 219 times with a yield of about 11%. It is an Mr-230,000 complex containing 13 atoms iron and 12 atoms labile sulfur/molecule. The presence of a molybdopterin cofactor in the nitrate reductase Z complex was demonstrated by reconstitution experiments of the molybdenum-cofactor-deficient NADPH-dependent nitrate reductase activity from a Neurospora crassa nit-1 mutant and by fluorescence emission and excitation spectra of stable derivatives of molybdoterin extracted from the purified enzyme. Both nitrate reductases share common properties such as relative molecular mass, subunit composition and electron donors and acceptors. Nevertheless, they diverge by two properties: their electrophoretic migrations are very different (RF of 0.38 for nitrate reductase Z versus 0.23 for nitrate reductase A), as are their susceptibilities to trypsin. An immunological study performed with a serum raised against nitrate reductase Z confirmed the existence of common epitopes in both complexes but unambiguously demonstrated the presence of specific determinants in nitrate reductase Z. Furthermore, it revealed a peculiar aspect of the regulation of both nitrate reductases: the nitrate reductase A enzyme is repressed by oxygen, strongly inducible by nitrate and positively controlled by the fnr gene product; on the contrary, the nitrate reductase Z enzyme is produced aerobically, barely induced by nitrate and repressed by the fnr gene product in anaerobiosis.  相似文献   

4.
The green alga Chlamydomonas reinhardtii is a model organism for the study of photosynthesis. The chloroplast ATP synthase is responsible for the synthesis of ATP during photosynthesis. Using genetic engineering and biolistic transformation, a string of eight histidine residues has been inserted into the amino-terminal end of the β subunit of this enzyme in C. reinhardtii. The incorporation of these amino acids did not impact the function of the ATP synthase either in vivo or in vitro and the resulting strain of C. reinhardtii showed normal growth. The addition of these amino acids can be seen through altered gel mobility of the β subunit and the binding of a polyhistidine-specific dye to the subunit. The purified his-tagged CF1 has normal Mg2+-ATPase activity, which can be stimulated by alcohol and detergents and the enzyme remains active while bound to a nickel-coated surface. Potential uses for this tagged enzyme as a biochemical tool are discussed.  相似文献   

5.
Preliminary studies showed that the periplasmic nitrate reductase (Nap) of Rhodobacter sphaeroides and the membrane-bound nitrate reductases of Escherichia coli are able to reduce selenate and tellurite in vitro with benzyl viologen as an electron donor. In the present study, we found that this is a general feature of denitrifiers. Both the periplasmic and membrane-bound nitrate reductases of Ralstonia eutropha, Paracoccus denitrificans, and Paracoccus pantotrophus can utilize potassium selenate and potassium tellurite as electron acceptors. In order to characterize these reactions, the periplasmic nitrate reductase of R. sphaeroides f. sp. denitrificans IL106 was histidine tagged and purified. The Vmax and Km were determined for nitrate, tellurite, and selenate. For nitrate, values of 39 μmol · min−1 · mg−1 and 0.12 mM were obtained for Vmax and Km, respectively, whereas the Vmax values for tellurite and selenate were 40- and 140-fold lower, respectively. These low activities can explain the observation that depletion of the nitrate reductase in R. sphaeroides does not modify the MIC of tellurite for this organism.  相似文献   

6.
2,4-Dienoyl-CoA reductases, enzymes of the beta-oxidation of unsaturated fatty acids which were purified from bovine liver and oleate-induced cells of Escherichia coli, revealed very similar substrate specificities but distinctly different molecular properties. The subunit molecular weights, estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 32,000 and 73,000 for the mammalian and the bacterial enzyme, respectively. The native molecular weights, calculated from sedimentation coefficients and Stokes radii yielded 124,000 for the bovine liver and 70,000 for the bacterial enzyme. Thus, bovine liver 2,4-dienoyl-CoA reductase is a tetramer consisting of four identical subunits. The E. coli 2,4-dienoyl-CoA reductase, however, possesses a monomeric structure. The latter enzyme contains 1 mol of FAD/mol of enzyme, whereas the former reductase is not a flavoprotein. The bovine liver reductase reduced 2-trans, 4-cis- and 2-trans,4-trans-decadienoyl-CoA to 3-trans-decenoyl-CoA. The E. coli reductase catalyzed the reduction of the same two substrates but in contrast yielded 2-trans-decenoyl-CoA as reaction product. Certain other properties of the two 2,4-dienoyl-CoA reductases are also presented. The localization of the reductase step within the degradation pathway of 4-cis-decenoyl-CoA, a metabolite of linoleic acid, is discussed.  相似文献   

7.
Pyrocatechase [catechol:oxygen, 1,2-oxidoreductase (decyclizing), EC 1.13.11.1] from Pseudomonas arvilla C-1 has been reported to contain 2 g atoms of iron/mol of enzyme, based on a molecular weight of 90,000, determined by sedimentation and diffusion constants (Y. Kojima, H. Fujisawa, A. Nakazawa, T. Nakazawa, F. Kanetsuna, H. Taniuchi, M. Nozaki, and O. Hayaishi, 1967, J. Biol. Chem., 242, 3270–3278). The molecular weight was estimated again by sedimentation equilibrium and Sephadex G-200 gel filtration and found to be 63,000 and 60,000, respectively. The enzyme was also found to contain 1 g atom of iron/mol of enzyme, based on a molecular weight of 63,000. The enzyme was dissociated into two bands on polyarcylamide gel electrophoresis in the presence of either sodium dodecyl sulfate or 8 m urea, and was separated into two subunits, α and β, by CM-cellulose chromatography using a buffer solution containing 8 m urea. The molecular weights of the α and β subunits were determined to be 30,000 and 32,000, respectively, by sodium dodecyl sulfate-gel electrophoresis. The NH2-terminal sequences of these subunits determined by Edman degradation were as follows: α subunit, Thr-Val-Asn-Ile-Ser-His-Thr-Ala-Gln-Ile-Gln-Gln-Phe-Phe-Gln-Gln-(X)-(X)-Gly -Phe-Gly; β subunit, Thr-Val-Lys-Ile-Ser-His-Thr-Ala-Asp-Ile-Gln-Ala-Phe-Phe-Asn-Gln-Val-(X)-Gly-Leu-Asx. The COOH-terminal amino acid residues were determined to be alanine for the α subunit and glycine for the β subunit by three different methods: carboxypeptidase digestion, tritium labeling, and hydrazinolysis. These results indicate that the enzyme consists of two nonidentical subunits, α and β.  相似文献   

8.
1. (Na+ +K+)-ATPase from rectal gland of Squlus acanthias contains 34 SH groups per mol (Mr 265000). 15 are located on the α subunit (Mr 106 000) and two on the β subunit (Mr 40 000). The β subunit also contains one disulphide bridge. 2. The reaction of (Na+ +K+)-ATPase with N-ethylmaleimide shows the existence of at least three classes of SH groups. Class I contains two SH groups on each α subunit and one on each β subunit. Reaction of these groups with N-methylmaleimide in the presence of 40% glycerol or sucrose does not alter the enzyme activity. Class II contains four SH groups on each α subunit, and the reaction of these groups with 0.1 mM N-ethylmaleimide in the presence of 150 mM K+ leads to an enzyme species with about 16% activity. The remaining enzyme activity can be completely abolished by reaction with 5–10 nM N-ethylmaleimide, indicating a third class of SH groups (Class III). This pattern of inactivation is different from that of the kidney enzyme, where only one class of SH groups essential to activity is observed. 3. It is also shown that N-ethylmaleimide and DTNB inactivate by reacting with the same Class II SH groups. 4. Spin-labelling of the (Na+ +K+)-ATPase with a maleimide derivative shows that Class II groups are mostly buried in the membrane, whereas Class I groups are more exposed. It is also shown that spin label bound to the Class I groups can monitor the difference between the Na+- and K+-forms of the enzyme.  相似文献   

9.
The periplasmic dissimilatory nitrate reductase from Rhodobacter capsulatus N22DNAR+ has been purified. It comprises a single type of polypeptide chain with subunit molecular weight 90,000 and does not contain heme. Chlorate is not an alternative substrate. A molybdenum cofactor, of the pterin type found in both nitrate reductases and molybdoenzymes from various sources, is present in nitrate reductase from R. capsulatus at an approximate stoichiometry of 1 molecule per polypeptide chain. This is the first report of the occurrence of the cofactor in a periplasmic enzyme. Trimethylamine-N-oxide reductase activity was fractionated by ion exchange chromatography of periplasmic proteins. The fractionated material was active towards dimethylsulphoxide, chlorate and methionine sulphoxide, but not nitrate. A catalytic polypeptide of molecular weight 46,000 was identified by staining for trimethylamine-N-oxide reductase activity after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The same polypeptide also stained for dimethylsulphoxide reductase activity which indicates that trimethylamine-N-oxide and dimethylsulphoxide share a common reductase.Abbreviations DMSO dimethylsulphoxide - LDS lithium dodecyl sulphate - MVH reduced methylviologen - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate - TMAO trimethylamine-N-oxide  相似文献   

10.
3-Methylcrotonyl-CoA carboxylase (MCase), an enzyme of the leucine oxidation pathway, was highly purified from bovine kidney. The native enzyme has an approximate molecular weight of 835,000 as measured from exclusion limits by polyacrylamide gel electrophoresis at pH 7.3. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated two subunits, identified as a biotin-free subunit (A subunit; Mr = 61,000) and a biotin-containing subunit (B subunit; Mr = 73,500). The biotin content of the enzyme was 1 mol/ 157,000 g protein, consistent with an AB protomeric structure for the enzyme. The isoelectric point of the enzyme was found to be 5.4. Maximal MCase activity was found at pH 8 and 38 °C in the presence of Mg2+ and an activating monovalent cation such as K+. Kinetic constants (Km values) for the enzyme substrates were: 3-methylcrotonyl-CoA, 75 μm; ATP, 82 μm; HCO3?, 1.8 mm. Certain acyl-CoA derivatives, including crotonyl-CoA, (2Z)-3-ethylcrotonyl-CoA, and acetoacetyl-CoA, were also substrates for the enzyme. Some data on inhibition of the enzyme by acyl-CoA derivatives, and sulfhydryl- and arginyl-reagents, are presented.  相似文献   

11.
Malonyl-CoA decarboxylase was partially purified (nearly 1000-fold) from Mycobacterium tuberculosis H37Ra by ammonium sulfate precipitation, gel filtration with Sepharose 6B, and chromatography on DEAE Sephacel, carboxymethyl-Sephadex, and NADP-agarose. Polyacrylamide gel electrophoresis showed a major band (60–70%), which contained the enzymatic activity, and a minor band which had no decarboxylase activity. The molecular weight of the enzyme was 44,000, and the PI and pH optimum were 6.7 and 5.5, respectively. The enzyme showed a typical Michaelis-Menten substrate saturation, with an apparent Km and V of 0.2 mm and 3.85 μmol/min/mg, respectively. It catalyzed decarboxylation of methylmalonyl-CoA only at 5% of the rate observed with malonyl-CoA, whereas malonic acid and succinyl-CoA were not decarboxylated. Antibodies prepared against malonyl-CoA decarboxylase from the uropygial glands of goose and rat liver mitochondria did not inhibit the bacterial enzyme. Avidin did not inhibit the enzyme suggesting that biotin was not involved in the reaction. Thiol-directed reagents inhibited the enzyme as did CoA, acetyl-CoA, propionyl-CoA, methylmalonyl-CoA, and succinyl-CoA. Malonyl-CoA decarboxylase was also partially purified from malonate-grown Pseudomonas fluorescens. The molecular weight of this enzyme was 56,000 and the pH optimum and apparent Km were 5.5 and 1 mm, respectively. Unlike the mycobacterial enzyme, this enzyme was insensitive to p-hydroxymercuribenzoate, acetyl-CoA, and propionyl-CoA, and it was less sensitive to inhibition by succinyl-CoA and CoA than the mycobacterial enzyme. The size and properties of the two bacterial enzymes suggest that these are quite unlike the mammalian and avian enzymes and that they constitute a different class of malonyl-CoA decarboxylases.  相似文献   

12.
《BBA》1986,849(1):121-130
The binding of 3′-O-(1-naphthoyl)adenosinetriphosphate (1-naphthoyl-ATP), ATP and ADP to TF1 and to the isolated α and β subunits was investigated by measuring changes of intrinsic protein fluorescence and of fluorescence anisotropy of 1-naphthoyl-ATP upon binding. The following results were obtained. (1) The isolated α and β subunits bind 1 mol 1-naphthoyl-ATP with a dissociation constant (KD(1-naphthoyl-ATP)) of 4.6 μM and 1.9 μM, respectively. (2) The KD(ATP) for α and β subunits is 8 μM and 11 μM, respectively. (3) The KD(ADP) for α and β subunits is 38 μM μM and 7 μM, respectively. (4) TF1 binds 2 mol 1-naphthoyl-ATP per mol enzyme with KD = 170 nM. (5) The rate constant for 1-naphthoyl-ATP binding to α and β subunit is more than 5 · 104 M−1s−1. (6) The rate constant for 1-naphthoyl-ATP binding to TF1 is 6.6 · 103 M−1 · s−1 (monophasic reaction); the rate constant for its dissociation in the presence of ATP is biphasic with a fast first phase (kA−1 = 3 · 10−3s−1) and a slower second phase (kA−2 < 0.2 · 10−3s−1). From the appearance of a second peak in the fluorescence emission spectrum of 1-naphthoyl-ATP upon binding it is concluded that the binding sites in TF1 are located in an environment more hydrophobic than the binding sites on isolated α and β subunits. The differences in kinetic and thermodynamic parameters for ligand binding to isolated versus integrated α and β subunits, respectively, are explained by interactions between these subunits in the enzyme complex.  相似文献   

13.
A novel nitrate reductase (NR) was isolated from cell extract of the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens strain ALEN 2 and characterized. This enzyme is a classical nitrate reductase containing molybdopterin cofactor in the active site and at least one iron-sulfur cluster per subunit. Mass spectrometric analysis showed high homology of NR with the catalytic subunit NarG of the membrane nitrate reductase from the moderately halophilic bacterium Halomonas halodenitrificans. In solution, NR exists as a monomer with a molecular weight of 130–140 kDa and as a homotetramer of about 600 kDa. The specific nitrate reductase activity of NR is 12 μmol/min per mg protein, the maximal values being observed within the neutral range of pH. Like other membrane nitrate reductases, NR reduces chlorate and is inhibited by azide and cyanide. It exhibits a higher thermal stability than most mesophilic enzymes.  相似文献   

14.
An enzyme capable of reducing acetoin in the presence of NADH was purified from Mycobacterium sp. B-009, a non-clinical bacterial strain of soil origin. The enzyme is a homotetramer and can be classified as a medium-chain alcohol dehydrogenase/reductase based on the molecular weight of the monomer. Identification of the structural gene revealed a limited distribution of homologous genes only among actinomycetes. In addition to its activity as a reductase specific for (S)-acetoin (EC 1.1.1.76), the enzyme showed both diacetyl reductase (EC 1.1.1.304) and NAD+-dependent alcohol dehydrogenase (EC 1.1.1.1) activities. (S)-Acetoin and diacetyl reductases belong to a group of short-chain alcohol dehydrogenase/reductases but do not have superior abilities to dehydrogenate monoalcohols. Thus, the purified enzyme can be readily distinguished from other enzymes. We used the dual functionality of the enzyme to effectively reduce diacetyl to (S)-acetoin, coupled with the oxidation of 1-butanol.  相似文献   

15.
16.
The chloroplastic glyceride isoform of dihydroxyacetone phosphate reductase (Gly-DHAPR) in the photosynthetic unicellular green algae, Dunaliella, plays key role in the synthesis of glycerol-P and glycerides. A four-step procedure has been developed to purify the Gly-DHAPR from the chloroplasts of Dunaliella tertiolecta. The enzyme was purified 462-fold to apparent electrophoretic homogeneity by precipitation of Rubisco by polyethylene glycol-4000, and successive chromatography on DEAE cellulose, Sephacryl S-200, and Red Agarose. The overall yield of the purified enzyme was 5.1% with a specific activity of 425 μmol. min?1. mg?1 protein, and a subunit molecular mass of 37 kD. The Gly-DHAPR had little preference for NADH or NADPH, but was highly specific for DHAP. The purified enzyme was slightly stimulated by 50 mM NaCl, KCl or by 25 mM MgCl2. Detergents, lipids, fatty acids, or long-chain acyl-CoA derivatives inhibited the Gly-DHAPR. The Gly-DHAPR differs in properties from the other chloroplastic osmoregulatory isoform of DHAP reductase from Dunaliella, but has significant similarities with the glyceride isoforms from higher plants for glycerol-P and triglyceride synthesis.  相似文献   

17.
ADPglucose pyrophosphorylase from potato (Solanum tuberosum L.) tubers has been purified by hydrophobic chromatography on 3 aminopropyl-sepharose (Seph-C3-NH2). The purified preparation showed two closely associated protein-staining bands that coincided with enzyme activity stains. Only one major protein staining band was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The subunit molecular weight was determined to be 50,000. The molecular weight of the native enzyme was determined to be 200,000. The enzyme appeared to be a tetramer consisting of subunits of the same molecular weight. The subunit molecular weight of the enzyme is compared with previously reported subunit molecular weights of ADPglucose pyrophosphorylases from spinach leaf, maize endosperm, and various bacteria. ADPglucose synthesis from ATP and glucose 1-P is almost completely dependent on the presence of 3-P-glycerate and is inhibited by inorganic phosphate. The kinetic constants for the substrates and Mg2+ are reported. The enzyme Vmax is stimulated about 1.5- to 3-fold by 3 millimolar DTT. The significance of the activation by 3-P-glycerate and inhibition by inorganic phosphate ADPglucose synthesis catalyzed by the potato tuber enzyme is discussed.  相似文献   

18.
The restriction endonuclease PalI was purified from Providencia alcalifaciens 1650-fold with a yield of 33%. The purified protein moved as a single band upon polyacrylamide gel electrophoresis. When this was carried out in the presence of sodium dodecyl sulfate, a molecular weight of 31,000 was obtained for PalI. Gel filtration through Sephacryl S200 gave molecular weights ranging from 44,000 to 53,000 when 58 to 1870 ng/ml enzyme were used, respectively. Other properties of the enzyme are described.  相似文献   

19.
J.H. Verheijen  P.W. Postma  K. Van Dam 《BBA》1978,502(2):345-353
1. 8-Azido-ATP is a substrate for Escherichia coli (Ca2+ + Mg2+)-ATPase (E. coli F1).2. Illumination of E. coli F1 in the presence of 8-azido-ATP causes inhibition of ATPase activity. The presence of ATP during illumination prevents inhibition.3. 8-Azido-ATP and 4-chloro-7-nitrobenzofurazan (NbfCl) bind predominantly to the α subunit of the enzyme, but also significantly to the β subunit.4. The α subunit of E. coli F1 seems to have some properties that in other F1-ATPases are associated with the β subunit.  相似文献   

20.
The isolation and properties of a single site temperature sensitive protease mutant of Bacillus subtilis are described. Numerous criteria suggest that the mutation resides in the structural gene coding for a basic serine protease. The mutation has been mapped between aroD and lys-1 on the Bacillus subtilis chromosome. This protease exists as an intracellular and extracellular enzyme. The mutant cells are temperature sensitive for sporulation, antibiotic production, and the sporulation-specific alteration in DNA-dependent RNA polymerase β subunit. Several types of evidence indicate a direct involvement of this enzyme in a limited proteolytic cleavage of vegetative RNA polymerase β subunit, which produces the lower molecular weight β subunit found in sporulating cells. The derangement in this process is sufficient to account for the stoppage of sporulation at stage 0 when the mutant cells are grown at the non-permissive temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号