首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous solutions combining a high concentration of formaldehyde (4%) with low concentrations of glutaraldehyde (0.5--01%) have been used to simultaneously localize amines by the formation of fluorescent products and to fix central nervous tissue for electron microscopy. The fluorescence reaction is produced by the aldehyde mixture at room temperature and the fluorescence is stable when the tissue is maintained in aqueous solution. This means that nerve cell bodies and terminal fields which contain catecholamines can be located accurately in vibratome sections at the light microscope level and, after further processing, can be examined under the electron microscope. With 1% glutaraldehyde in the aldehyde mixture, ultrastructural details are well preserved; there is no significant distortion of any component of the tissue. If vibratome or cryostat sections are dried against glass slides, the intensity of the fluorescence reaction is enhanced and the sections can be permanently mounted.  相似文献   

2.
Summary Aqueous solutions combining a high concentration of formaldehyde (4%) with low concentrations of glutaraldehyde (0.5–1%) have been used to simultaneously localize amines by the formation of fluorescent products and to fix central nervous tissue for electron microscopy. The fluorescence reaction is produced by the aldehyde mixture at room temperature and the fluorescence is stable when the tissue is maintained in aqueous solution. This means that nerve cell bodies and terminal fields which contain catecholamines can be located accurately in vibratome sections at the light microscope level and, after further processing, can be examined under the electron microscope. With 1% glutaraldehyde in the aldehyde mixture, ultrastructural details are well preserved; there is no significant distortion of any component of the tissue. If vibratome or cryostat sections are dried against glass slides, the intensity of the fluorescence reaction is enhanced and the sections can be permanently mounted.  相似文献   

3.
A new technique for studying axonal transport has been developed. The technique, which is based on histofluorescence techniques, enables the measurement of several different accumulated substances and parameters within a single nerve in relation to a nerve crush or local cooling. Any substance that can be made to fluoresce can be measured. The tissue is treated according to the formaldehyde-induced fluorescence method of Hillarp and Falck for visualization of monoamines, or according to the indirect immunofluorescence method. For immunofluorescence the nerve is cryostat-sectioned and various sections can be incubated with primary antisera against different antigens. After incubation and mounting the sections are placed in a cytofluorimeter (Leitz MPV II). They are passed under a measuring slit at a steady speed by a motor driven cross-table. The fluorescence intensity passing through the measuring slit is continuously registered by a recording unit with an integrator. This recorder produces a graphical nerve accumulation profile, and the area under the profile, relating to the fluorescence, is expressed in arbitrary units. This article presents data on the accumulation of noradrenaline, dopamine beta-hydroxylase, and tyrosine hydroxylase in crush-operated rat sciatic nerve. The time-course accumulations for noradrenaline (visualized by the Falck and Hillarp method) and dopamine beta-hydroxylase (visualized by immunofluorescence) demonstrated a striking similarity, which is to be expected since the two substances are stored in the same organelle. Tyrosine hydroxylase (visualized by immunofluorescence) showed a slower accumulation with time, but faster than would be expected had the enzyme been 100% soluble. Colchicine but not lumi-colchicine blocked the transport of noradrenaline organelles. With the new scanning technique we have the potential to study accumulation profiles of several different substances within a single nerve. Morphometric data, morphological observations, and photograph documentation of the same nerve section are also available.  相似文献   

4.
Nerve fibres in the central nervous system of the cockroach Periplaneta ameri-cana can be displayed by staining whole ganglia for 1-2 hr in a saturated solution of Procion yellow M-4R in cockroach saline diluted to maintain isotonicity. Selected fibres are stained preferentially by cutting a peripheral nerve or interganglionic connective close to the ganglion, or damaging neuron cell-bodies. The ganglion is washed in saline, fixed in alcoholic Bouin, dehydrated and embedded. Under fluorescence microscopy, sections show stained fibres brilliant yellow against a green background. The method is simpler than intracellular injection and demonstrates even the finest fibres.  相似文献   

5.
Satisfactory Bodian silver staining of paraffin wax sections of both locust (Schistocerca gregaria) and cockroach (Periplaneta americana) central nerve tissue can be obtained with only one impregnation, instead of the usual two, by the following modified procedure. Freshly dissected ganglia are fixed in an improved synthetic alcoholic Bouin (40% formaldehyde 0-15: ethanol 25: acetic acid 5: picric acid 0.5: either ethyl acetate 5 and diethoxymethane 15, or ethyl acetate 25: distilled water to 100). Formaldehyde content governs intensity of glial staining (little or none without formaldehyde) and the mixture with more ethyl acetate substituted for diethoxymethane gives more intense staining overall. Sections are impregnated once only, overnight, in 2% Protargol solution brought to about pH 8.4 with ammonium hydroxide and containing 1.3 g of copper per 65 ml. Depending on fixative composition, species, section thickness and contrast desired between nerve fibers and background, the subsequent distilled water rinse is shortened or omitted and sections are developed in 1% hydroquinone with sodium sulfite content reduced (to 2.5-4% Na2SO3.7H2O) for thinner (10 micrometer) sections but normal (10%) for thicker (20 micrometer) ones. Sections are finally washed, gold intensified, treated with sodium thiosulfate and dehydrated, cleared and mounted as usual. Results are slightly lighter than with normal double impregnation but entirely suitable for studies of neuroanatomy.  相似文献   

6.
Satisfactory Bodian silver staining of paraffin wax sections of both locust (Schistocerca gregaria) and cockroach (Periplaneta americana) central nerve tissue can be obtained with only one impregnation, instead of the usual two, by the following modified procedure. Freshly dissected ganglia are fixed in an improved synthetic alcoholic Bouin (40% formaldehyde 0-15:ethanol 25:acetic acid 5: picric acid 0.5:either ethyl acetate 5 and diethoxymethane 15, or ethyl acetate 25:distilled water to 100). Formaldehyde content governs intensity of glial staining (little or none without formaldehyde) and the mixture with more ethyl acetate substituted for diethoxymethane gives more intense staining overall. Sections are impregnated once only, overnight, in 2% Protargol solution brought to about pH 8.4 with ammonium hydroxide and containing 1.3 g of copper per 65 ml. Depending on fixative composition, species, section thickness and contrast desired between nerve fibers and background, the subsequent distilled water rinse is shortened or omitted and sections are developed in 1% hydroquinone with sodium sulfite content reduced (to 2.5-4% Na2SO3·7H2O) for thinner (10 μm) sections but normal (10%) for thicker (20 μm) ones. Sections are finally washed, gold intensified, treated with sodium thiosulfate and dehydrated, cleared and mounted as usual. Results are slightly lighter than with normal double impregnation but entirely suitable for studies of neuroanatomy.  相似文献   

7.
A diaminobenzidine (DAB) stain for myelin in glutaraldehyde fixed, osmicated, semithin epoxy sections is described. One or 1.5 μm sections, dried onto slides, are first etched with a 1:2 dilution of saturated sodium ethox-ide:absolute ethanol, then incubated in 0.05% aqueous DAB with 0.01% hydrogen peroxide. DAB specifically stains osmium fixed myelinated nerve fibers. This permits high resolution light microscopic study of myelinated nerve fibers in semithin sections of tissues that also can be studied by electron microscopy.  相似文献   

8.
A tissue pretreatment is introduced which effectively suppresses the silver impregnation of connective tissue and nonspecific background elements in peripheral nerve. The result is a selective impregnation of nerve fibers. The procedure utilizes fresh frozen sections and can be used with the Holmes (1947) or Bodian (1936) techniques. Fresh frozen sections are cut at 10 microns, mounted on slides and air dried for 5 minutes. They are fixed for 30 minutes in formol-sublimate (10% formalin saturated with mercuric chloride) and then placed into 0.5% iodine in 70% alcohol for 5 minutes followed by bleaching in 2.5% sodium thiosulfate for 2 minutes. After washing in running tap water for 10 minutes and a brief rinse in distilled water, impregnation is accomplished by the Holmes (1947) or Bodian (1936) procedure beginning with the step containing the aqueous silver solution. The results show an absence of impregnation of connective tissue and nonspecific background. The technique is simple, rapid, and, by utilizing fresh frozen sections, can be used for other histological and histochemical purposes. Several experiments were done to determine the causes of the connective tissue and background suppression. The air drying step was omitted; the sections were fixed in formalin without mercuric chloride; and the formol-sublimate fixation time was increased. The results suggest that connective tissue impregnation is suppressed by the use of mercuric chloride in the fixative and that the background suppression is related to the short fixation time with formolsublimate.  相似文献   

9.
Abstract

Tandem dimer Tomato (tdTomato) provides a useful alternative to enhanced green fluorescent protein (eGFP) for performing simultaneous detection of fluorescent protein in histological sections together with fluorescence immunohistochemistry (IHC). eGFP has many properties that make it useful for cell labeling; however, during simultaneous fluorescence IHC, the usefulness of eGFP may be limited. This limitation results from a fixation step required to identify eGFP in histological tissue sections that can mask antibody epitopes and adversely affect staining intensity. An alternative fluorescent protein, tdTomato, may assist concurrent detection of fluorescent protein within tissue sections and fluorescence IHC, because detection of tdTomato does not require tissue fixation. Tissue sections were obtained from various organs of mice ubiquitously expressing eGFP or tdTomato that were either unfixed or fixed with 4% paraformaldehyde. These tissues later were combined with fluorescence IHC. Both eGFP and tdTomato displayed robust signals in fixed frozen sections. Only tdTomato fluorescence, however, was detected in unfixed frozen sections. Simultaneous detection of fluorescence IHC and fluorescent protein in histological sections was observed only in unfixed frozen tdTomato tissue. For this reason, tdTomato is a useful substitute for eGFP for cell labeling when simultaneous fluorescence IHC is required.  相似文献   

10.
A tissue pretreatment technique is introduced which effectively suppresses the silver impregnation of connective tissue and nompecific background elements in peripheral nerve. The result is a selective impregnation of nerve fibers. The procedure utilizes fresh frozen sections and can be used with the Holmes (1947) or Bodian (1936) techniques. Fresh frozen sections are cut at 10 microns, mounted on slides and air dried for 5 minutes. They are fixed for 30 minutes in formol-sublimate (10% formalin saturated with mercuric chloride) and then placed into 0.5% iodine in 70% alcobol for 5 minutes followed by bleaching in 2.5% sodium thiosulfate for 2 minutes. After washing in running tap water for 10 minutes and a brief rinse in distilled water, impregnation is accomplished by the Holmes (1947) or Bodian (1936) procedure beginnins with the step containing the aqueous silver solution. The results show an absence of impregnation of connective tissue and nonspecific background. The technique is simple, rapid, and, by utilidng fresh hrozen sections, can be used for other histological and histochemical purposes. Several experiments were done to determine the causes of the connective tissue and background suppression. The air drying step was omitted; the sections were fixed in formalin without mercuric chloride; and the formol-sublimate fixation time was increased. The results suggest that connective tissue impregnation H suppressed by the use of mercuric chloride in the fixative and that the background supprgsion is related to the short fixation time with formol-sublimate.  相似文献   

11.
A simple and rapid method for demonstrating myelinated nerve fibers in frozen sections of the central and peripheral nervous system is described. Material fixed by perfusion with mixed aldehydes gives the best results but the method also works on specimens fixed by immersion in formaldehyde. Frozen sections varying in thickness from 15-50 micron are mounted on slides subbed with chrome alum-gelatin. After hydration (60-120 min), sections are mordanted (20-40 min) in 2.5% iron alum and rinsed briefly in three changes of distilled H2O (total 2 min). Staining is for 60-180 min in 20 cc freshly made 10% alcoholic hematoxylin diluted with 165 cc distilled H2O to which 15 cc saturated Li2CO3 is added. The sections are washed in distilled H2O (5-15 min) and dehydrated in graded alcohols without differentiation in mordant, and covered. Myelin stains a dark blue-purple against a light grey background. Fiber tracts, as well as individual myelinated fibers, are clearly demonstrated.  相似文献   

12.
Summary The effect of electrical field stimulation on noradrenaline (NA), dopamine (DA) and 5-hydroxytryptamine (5-HT) nerve terminals in rat brain slicesin vitro was investigated. Slices prepared from the cerebral cortex or the neostriatum were incubated in physiologic buffer for 30 min and then superfused by buffer and stimulated by an electrical field (biphasic pulses, 10 Hz, 12 mA, 2 ms) for various time periods. The effect of the stimulation was studied at the cellular level with the histochemical fluorescence technique of Falck and Hillarp. The transmitter overflow into the superfusing buffer caused by the stimulation was studied with isotope technique. Cerebral Cortex NA Nerve Terminals. Stimulation caused release of NA from cortical NA nerve terminals. Already after 2 min stimulation a slight decrease of the fluorescence intensity of the nerve terminals could be found. Stimulation for 15 to 30 min greatly reduced the fluorescence intensity. In slices preincubated with3H-NA the stimulation-induced overflow of tritium during 2 min stimulation was about 15% (i.e. 15% of the tissue tritium content was overflowing into the superfusing buffer in response to stimulation for 2 min). During prolonged stimulation there was a considerable decline of the tritium efflux. Cerebral Cortex 5-HT Nerve Terminals. The 5-HT-analogue 6-hydroxytryptamine (6-HT) which is readily taken up into 5-HT nerve terminals was used to permit good visualization of these nerve terminals. Uptake of 6-HT into cortical NA nerve terminals was prevented by preincubation with 6-hydroxydopamine (6-OH-DA) or protriptyline. Stimulation for 15 to 30 min reduced the fluorescence intensity of the 5-HT nerve terminals. In slices preincubated with3H-5-HT the stimulation-induced overflow of tritium during 2 min stimulation was about 5%. The tritium efflux slowly decreased during continuous stimulation. Neostriatal DA Nerve Terminals. In slices frozen directly after preparation an intense diffuse fluorescence could be seen. After incubation in drug-free buffer at 37° C the fluorescence was localized in the varicosities of the DA nerve terminals. The central parts of the slices almost completely lacked specific fluorescence, while the outer zones were brightly fluorescent. No clear reduction of the fluorescence intensity of the DA nerve terminals in the outer zone could be observed after stimulation for 30 min. In slices preincubated with3H-DA the stimulation-induced overflow of tritium during 2 min stimulation was about 2%. The tritium efflux slowly decreased during continuous stimulation.It is suggested that the differences in release between the various nerve terminal systems foundin vitro reflect differences in transmitter release occurringin vivo. The comparably high release of NA per impulse from the cortical NA nerve terminals implicate that the discharge rate of these neuronsin vivo is very low.This investigation has been supported by grants from the Swedish Medical Research Council (B72-14X-2330-05A) and Magnus Bergwall's Foundation.The author is greatly indebted to Mrs. Annika Hamberger for her skillful technical assistance. For generous supplies of drugs thanks are due to Hässle, Göteborg, Sweden, through Dr. H. Corrodi (6-HT, 6-OH-DA and H44/68).  相似文献   

13.
A method of fixation compatible with both the Nauta-Gygax and Swank-Davenport procedures for degenerating nerve fibers, which shortens the time required by the former procedure, is as follows: The central nervous system is perfused with a 0.9% aqueous solution of NaCl followed by an aqueous solution containing 5% K2Cr2O7 and 2.5% KClO3. The central nervous system is then hardened in 10% formalin for 1-3 days. Tissue for Marchi-type staining can be taken at this stage. For silver staining, the processing is continued by immersion overnight in 10% formalin in 20% alcohol, and frozen sections cut the next day. Sections, up to 50μ in thickness, are collected in 10% formalin and impregnated by the Nauta-Gygax technique. Best results are obtained by impregnating within 24-48 hr after sectioning.  相似文献   

14.
Summary The filum terminale of the rat was found to contain a large number of descending 5-hydroxytryptamine (5-HT)- and noradrenaline-containing axons as visualized histochemically using fluorescence microscopy of air-dried spread preparations. By this technique, central 5-HT-containing nerve fibers become easily accessible for rapid and sensitive fluorescence histochemistry. Both transmitter pharmacology and axonal flow dynamics can be studied in this preparation where several centimeters of 5-HT-axons can be obtained.  相似文献   

15.
To develop a method for quantitative electron microscopic immunocytochemistry on neural tissue of CNS, we tested the extent to which ethanol treatment would improve the penetration of immunoreagents through vibratome sections fixed in high concentrations of glutaraldehyde without compromising ultrastructure. Transverse or sagittal vibratome sections (60-80 microns) of spinal cord perfused with 1% formaldehyde plus 1% or 2.5% glutaraldehyde were washed in 50% ethanol for 0-70 min and stained to reveal immunoreactivity for neuropeptide Y (NPY). Semi-thin (1 micron) or ultra-thin sections were used to assess the depth to which NPY nerve fibers in the dorsal horn were stained. Without ethanol washing, immunoreactive nerve fibers were visualized only in the surface 5-10 microns of transverse or sagittal vibratome sections. In transverse vibratome sections, NPY nerve fibers, which ran perpendicular to the cut surfaces of the sections, were entirely stained after a 30-min wash in 50% ethanol. The numbers of NPY-immunoreactive varicosities and synapses were comparable at the surfaces and in the centers of the vibratome sections. In sagittal sections, where NPY nerve fibers ran parallel to the cut surfaces, fibers in the centers of vibratome sections could not be labeled even after 70 min in 50% ethanol. Substance P- and enkephalin (Enk)-immunoreactive nerve fibers could also be completely stained in transverse sections of spinal cord or medulla oblongata after 30-min exposure to ethanol. Ethanol washing had no significant deleterious effects on ultrastructure, although the amount of cytoplasmic matrix in neurons decreased with increasing exposure. These results indicate that washing with 50% ethanol for at least 30 min allows immunoreagents to penetrate completely through nerve fibers fixed with high concentrations of glutaraldehyde, as long as the fibers have cut ends at both surfaces of a vibratome section. This technique makes possible quantitative electron microscopic immunocytochemical studies and is proving a useful tool for defining synaptic connections in the CNS.  相似文献   

16.
Summary The complex catecholaminergic (CA) nervous system of the polychaete Ophryotrocha puerilis is documented using glyoxylic acid induced fluorescence (GIF) and immunohistochemistry. CA-neurons are found both in the central and peripheral nervous system. In the brain, about 50 CA-neurons are present in the perikaryal layer together with numerous CA fibres. Two pairs of CA perikarya are characteristic for each ganglion of the ventral nerve cord. CA-neurites in the ventral nerve cord are mainly arranged in 4 strands paralleling the longitudinal axis of the worm. Fluorescent neurons with receptive ciliary structures are present in body appendages (antennae, palps, urites, parapodial cirri), in the body-wall, and within the oesophageal wall. Furthermore, a subepidermal nerve net of free CA nerve endings has been found. After incubation of specimens with dopamine prior to the development of GIF more fluorescent perikarya could be observed; the fluorescence was also intensified. Pre-incubation with reserpine reduced the intensity of GIF. Results of high pressure liquid chromatography and immunostaining with a polyclonal antibody against a dopamine-glutaraldehyde-complex suggest that dopamine is the major CA transmitter. It is thought that dopaminergic neurons together with ciliary receptive structures act as mechano- and/or chemoreceptors.  相似文献   

17.
For application of the Bodian method to frozen sections, cut frozen peripheral nerve or muscle at 10 mum and mount. Fix for 4 days in 18 parts 80% ethanol, 1 part 10% formalin, and 1 part glacial acetic acid. Fix central nervous tissue in the same mixture prior to freezing and sectioning, and after mounting postfix for 4 days. Impregnate by the Bodian procedure. The results equal Bodian stains of paraffin sections. The technique is simple and reliable. The use of 10 mum frozen sections produces little artifact and allows alternate serial sections to be stained with other techniques.  相似文献   

18.
Acrolein is a potent fixative that provides both excellent preservation of ultrastructural morphology and retention of antigenicity, thus it is frequently used for immunocytochemical detection of antigens at the electron microscopic level. However, acrolein is not commonly used for fluorescence microscopy because of concerns about possible autofluorescence and destruction of the luminosity of fluorescent dyes. Here we describe a simple protocol that allows fine visualization of two fluorescent markers in 40-μm sections from acrolein-perfused rat brain. Autofluorescence was removed by pretreatment with 1% sodium borohydride for 30 min, and subsequent incubation in a 50% ethanol solution containing 0.3% hydrogen peroxide enhanced fluorescence labeling. Thus, fluorescence labeling can be used for high-quality detection of markers in tissue perfused with acrolein. Furthermore, adjacent acrolein-fixed sections from a single experiment can be processed to produce high-quality results for electron microscopy or fluorescence labeling. (J Histochem Cytochem 58:359–368, 2010)  相似文献   

19.
The substrate properties were compared between normal and myelin-deficient central nervous system (CNS) tissues by an in vitro assay of cell attachment and spreading. Fibroblasts (3T3) were plated onto culture substrata consisting of optic nerve tissue sections cut from normal or two myelin-deficient mutant mice, Shiverer and Quaking. Optic nerve sections from either of the mutant animals supported more 3T3 fibroblast spreading and adhesion than sections derived from animals with normal myelin. These results demonstrate that CNS myelin influences the ability of cells to attach and spread and that it is the actual presence of myelin which is inhibitory rather than the presence of optic nerve axons or oligodendrocytes.  相似文献   

20.
A differential staining method is described of myelinated fibres and nerve cell bodies applicable to sections of mammalian, including human, central nervous system specimens embedded in paraffin wax. Experimental and human necropsy material fixed in acetic paraformaldehyde in phosphate buffer was used. Sections of 15–20 m in thickness were obtained, attached to slides, deparaffinized and hydrated. After hydration, sections are oxidized (30 s) in 2% potassium permanganate, bleached (1 min) in 5% oxalic acid and rinsed in distilled water. Staining is for 2–5 h in the following solution: 0.06% thionin, 1% formaldehyde, 10% acetic acid in distilled water. Sections are subsequently washed in distilled water, dehydrated through 96% and absolute ethanol, cleared in eucalyptol and mounted in Eukitt. Using the method described in the present paper, a differential coloration of myelin and neurons is obtained. Myelinated fibres appear red, whereas nerve cell bodies and glial nuclei are stained blue. This procedure provides a high contrast between myelin and cells suitable for observation and photography of sections. Simultaneous and differential coloration of both myelin and cells is easily and directly obtained with constant and homogeneous results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号