首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of cyclic AMP on calcium movements in the pancreatic beta-cell was evaluated using an experimental approach based on in situ labelling of intracellular organelles of ob/ob-mouse islets with 45Ca. Whereas the glucose-stimulated 14Ca incorporation by mitochondria and secretory granules was increased under a condition known to reduce cyclic AMP (starvation), raised levels of this nucleotide (addition of 3-isobutyl-1-methylxanthine or N6,O2'-dibutyryl adenosine 3',5'-cyclic monophosphate) reduced the mitochondrial accumulation of 45Ca. Conditions with increased cyclic AMP were associated with a stimulated efflux of 45Ca from the secretory granules but not from the mitochondria. The microsomal fraction differed from both the mitochondrial and secretory granule fractions by accumulating more 45Ca after the addition of 3-isobutyl-1-methylxanthine. The results suggest that cyclic AMP potentiates glucose-stimulaated insulin release by increasing cytoplasmic Ca2+ at the expense of the calcium taken up by the organelles of the pancreatic beta-cells.  相似文献   

2.
The effect of cyclic AMP on calcium movements in the pancreatic β-cell was evaluated using an experimental approach based on in situ labelling of intracellular organelles of ob/ob-mouse islets with 45Ca. Whereas the glucose-stimulated 45Ca incorporation by mitochondria and secretory granules was increased under a condition known to reduce cyclic AMP (starvation), raised levels of this nucleotide (addition of 3-isobutyl-1-methylxanthine or N6,O2′-dibutyryl adenosine 3′,5′-cyclic monophosphate) reduced the mitochondrial accumulation of 45Ca. Conditions with increased cyclic AMP were associated with a stimulated efflux of 45Ca from the secretory granules but not from the mitochondria. The microsomal fraction differed from both the mitochondrial and secretory granule fractions by accumulating more 45Ca after the addition of 3-isobutyl-1-methylxanthine. The results suggest that cyclic AMP potentiates glucose-stimulated insulin release by increasing cytoplasmic Ca2+ at the expense of the calcium taken up by the organelles of the pancreatic β-cells.  相似文献   

3.
Calcitonin was studied in isolated kidney cells and in isolated mitochondria. A concentration of 10 ng/ml of synthetic calcitonin increases the cellular accumulation of 45Ca and the total cell calcium. The mitochondrial pool is increased several-fold. Kinetic analysis of the data shows that although the total cellular exchangeable calcium pool is enlarged, calcium influx and efflux are significantly depressed by calcitonin. The absence of phosphate or the presence of inhibitors of mitochondrial calcium transport completely abolish the effects of the hormone. In isolated mitochondria, the hormone stimulates the active calcium uptake and depresses the extramitochondrial calcium activity. Calcitonin counteracts the effects of cyclic AMP which stimulates the release of calcium from mitochondria and increases the extramitochondrial calcium activity. These data indicate that cellular calcium homeostasis is controlled by the mitochondrial calcium turnover. They suggest that calcitomin regulates the cell calcium metabolism and inhibits the transcellular calcium transport by stimulating the rate of calcium uptake by mitochondria which depresses cytoplasmic calcium activity.  相似文献   

4.
Neuronal calcium stores   总被引:4,自引:0,他引:4  
Neuronal calcium stores associated with specialized intracellular organelles, such as endoplasmic reticulum and mitochondria, dynamically participate in generation of cytoplasmic calcium signals which accompany neuronal activity. They fulfil a dual role in neuronal Ca2+ homeostasis being involved in both buffering the excess of Ca2+ entering the cytoplasm through plasmalemmal channels and providing an intracellular source for Ca2+. Increase of Ca2+ content within the stores regulates the availability and magnitude of intracellular calcium release, thereby providing a mechanism which couples the neuronal activity with functional state of intracellular Ca2+ stores. Apart of 'classical' calcium stores (endoplasmic reticulum and mitochondria) other organelles (e.g. nuclear envelope and neurotransmitter vesicles) may potentially act as a functional Ca2+ storage compartments. Calcium ions released from internal stores participate in many neuronal functions, and might be primarily involved in regulation of various aspects of neuronal plasticity.  相似文献   

5.
Cyclic nucleotide phosphodiesterase activity towards cyclic AMP and cyclic GMP was studied in extracts of rat islets of Langerhans. Biphasic Eadie plots [Eadie (1942) J. Biol. Chem. 146, 85-93] were obtained with either substrate suggesting the presence of both 'high'- and 'low'-Km components. The apparent Km values were 6.2 +/- 0.5 (n = 8) microM and 103.4 +/- 13.5 (6) microM for cyclic AMP and 3.6 +/- 0.3 (12) microM and 61.4 +/- 7.5 (13) microM for cyclic GMP. With cyclic AMP as substrate, phosphodeisterase activity was increased by calmodulin and Ca2+ and decreased by trifluoperazine, a specific inhibitor of calmodulin. With cyclic GMP as substrate, phosphodiesterase activity was decreased by omission of Ca2+ or addition of trifluoperazine. Addition of exogenous calmodulin had no effect on activity. The data suggest that Ca2+ may influence the islet content of cyclic AMP and cyclic GMP via effects on calmodulin-dependent cyclic nucleotide phosphodiesterase(s).  相似文献   

6.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumulation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5--1 microgram/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 microgram/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 microgram/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 microgram/ml). Somatostatin (1 microgram/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated. The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

7.
Experiments aimed at the partial reconstitution of the intracellular transport systems regulating the cytosolic free Ca2+ homeostasis are reported. Rat insulinoma subcellular fractions enriched in mitochondria, endoplasmic reticulum (microsomes), and secretory granules were studied. The ambient free Ca2+ concentration maintained by the separate or combined organelles was determined with a Ca2+-selective minielectrode. The data demonstrate that ambient [Ca2+] is established by the microsomes, not by the mitochondria or the secretory granules, in the range of resting cytosolic Ca2+ concentrations (0.1-0.2 microM Ca2+). Furthermore, the microsomes are able to deplete largely the mitochondria of their exchangeable calcium. Nonetheless, both mitochondria and microsomes, but not secretory granules, function as a coordinated unit to restore the previous ambient [Ca2+] following its perturbation. Thus, mitochondria play a major role in bringing down rapidly ambient [Ca2+] to the submicromolar range, whereas the endoplasmic reticulum acts as a relay in the transport mechanisms which lower [Ca2+] to the resting level.  相似文献   

8.
应用定量X-射线微区分析技术结合细胞化学技术,分析测定用单纯冷冻法保存离体猫肾脏过程中肾脏细胞的胞浆、线粒体、内质网、细胞核等细胞器内的Ca2+浓度变化,并探索钙通道阻滞剂对这种变化的影响。保存36小时及72小时后,线粒体与胞浆中Ca2+的峰背比极显著地提高,内质网、细胞核中钙颗粒减少。添加Verapamil后,保存过程中细胞器内Ca2+无显著变化。线粒体中的Ca2+峰背比与胞浆中的呈强的正相关,r=0990。实验结果显示:保存过程中,Ca2+由钙库(内质网等)进入胞浆中,线粒体在胞浆Ca2+浓度高时摄取Ca2+,而钙通道阻滞剂可抑制该过程。  相似文献   

9.
Cyclic nucleotide modulation of the sarcoplasmic reticulum calcium pump has been recognized for some time. Little is known, however, of cyclic nucleotide effects on the sarcolemmal Ca2+-pump. In sarcolemmal vesicles prepared from ventricular muscle by a recent technique (Jones, L.R., Maddock, S.W. and Besch, H.R. (1980) J. Biol. Chem. 255, 9971-9980) we have demonstrated via Millipore filtration that 10(-8) M and 10(-9) M cyclic GMP depressed the rate of ATP- and Mg2+-dependent 45Ca2+ uptake by 34% and 52%, respectively. Only at millimolar levels did cyclic AMP have any effect and the respective 5'-nucleotides had no effect at all. Parallel measurement of the associated (Ca2+ + Mg2+)-ATPase in the presence of either cyclic or 5'-nucleotides, however, revealed no concomitant depression in ATP hydrolysis. In another series of experiments, the cyclic GMP effect on 45Ca2+ uptake was associated with a significant decrease in the pump Vmax, and at the most effective concentration of cyclic GMP increased the apparent Km for Ca2+. These results suggest that cyclic GMP may depress ventricular Ca2+ efflux by decreasing the enzyme turnover and to a limited extent, decreasing pump affinity for Ca2+. This supports a hypothesis whereby cyclic GMP might modulate both local biochemical and electrophysiological events by an effect on a discrete, regional pool of intracellular Ca2+.  相似文献   

10.
delta-Haemolysin, a small surface-active polypeptide purified from the culture media of Staphylococcus aureus, was observed to stimulate the release of insulin from isolated rat islets of Langerhans. This effect was dose-dependent and saturable, with the half-maximal response elicited by a delta-haemolysin concentration of 10 micrograms/ml. Stimulation of insulin release by delta-haemolysin (10 micrograms/ml) was not dependent on the presence of glucose in the incubation medium, but was augmented by increasing concentrations of the sugar. The release of insulin in response to delta-haemolysin could be inhibited by depletion of extracellular Ca2+ or by adrenaline (epinephrine) (10 microM) and was readily reversible when delta-haemolysin was removed from the medium. In addition, the response was potentiated by incubation with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.2 mM). These observations suggest that delta-haemolysin induced a true activation of the beta-cell secretory mechanism. Stimulation of islets of Langerhans with delta-haemolysin was found to be associated with a modest increase in intracellular cyclic AMP levels, although the adenylate cyclase activity of islet homogenates was not increased by delta-haemolysin. delta-Haemolysin was observed to induce a dose-dependent net accumulation of 45Ca2+ by islet cells and to stimulate the efflux of 45Ca2+ from preloaded islets. The efflux of 45Ca2+ was modest in size and short-lived, but dramatically increased in medium depleted fo 40Ca2+. Incubation in the presence of verapamil augmented delta-haemolysin-induced 45Ca2+ efflux and insulin secretion. delta-Haemolysin was found to be a potent 45Ca2+-translocating ionophore in an artificial system. This response was dose-dependent and could be augmented by verapamil. In addition, phosphatidylcholine (25 micrograms/ml) was found to inhibit both delta-haemolysin induced 45Ca2+ translocation and insulin release in a precisely parallel manner. These studies suggest that the ability of delta-haemolysin to stimulate insulin release may be due, in part, to the facilitation of Ca2+ entry into the beta-cells of islets of Langerhans, mediated directly by an ionophoretic mechanism.  相似文献   

11.
Pancreatic islets were maintained in culture with or without islet-activating protein (IAP), which is a new protein purified from culture medium of Bordetella pertussis. These cultured islets (IAP-treated or control) were then incubated for 30 min in IAP-free medium with various insulin secretagogues. During incubation, much more insulin was released from IAP-treated islets than control islets in response to glucose, arginine, glucagon, and sulfonylurea. IAP was effective in this regard when added to cultures at concentrations higher than 0.01 ng/ml; the effect was dependent on concentration up to 100 ng/ml. Enhanced insulin secretion was associated with accumulation of cyclic AMP when breakdown of the nucleotide was prevented by a methylxanthine. Epinephrine caused marked inhibitions, via alpha-adrenergic receptors, of glucose-induced insulin release, cyclic AMP accumulation and 45Ca uptake in control islets but did not in IAP-treated islets during incubation. None of these effects of IAP pretreatment were observed unless the medium for incubation was supplemented with Ca ions. 45Ca ion flux through the islet cell membrane was accelerated by the IAP treatment; conceivably, IAP was effective in causing sustained activation of native calcium ionophores on the membrane, which would be responsible for the enhanced insulin and cyclic AMP responses characteristic of IAP-treated islets.  相似文献   

12.
The role of calcium and guanosine 3':5'-monophosphate (cyclic GMP) in the regulation of thyroid metabolism has been investigated in dog thyroid slices. Carbamoylcholine enhanced glucose carbon-1 oxidation, protein iodination, cyclic GMP accumulation and decreased thyrotropin-induced adenosine 3':5'-monophosphate (cyclic AMP) accumulation and iodine secretion; it did not affect protein synthesis. The effects of carbamoylcholine were reproduced under various experimental conditions by supplementary calcium in the medium, ouabain, and in media in which Na+ had been replaced by choline chloride. They were inhibited by lanthanum. These results further support the hypothesis that free intracellular Ca2+ is the intracellular signal for carbamoylcholine effects and suggest that a Na+ -gradient-driven Ca2+ extrusion mechanism operates in the thyroid cell. Mn2+ reproduced the effect of Ca2+ on glucose oxidation, protein iodination and cyclic GMP accumulation in Ca2+ -depleted slices and medium, and thus mimicked some intracellular effects of Ca2+. On the other hand Mn2+ inhibited the carbamoylcholine effect on thyrotropin-induced thyroid secretion and cyclic AMP accumulation, and Ca2+ inhibited the Mn2+-induced cyclic GMP accumulation. This suggests that the two ions compete for the same channel. Similarly Mn2+ inhibited calcium effects in the presence of ionophore A23187. Procaine inhibited protein iodination under all conditions suggesting a primary effect; it also inhibited all carbamoylcholine and ouabain actions. However the drug did not inhibit the effects of choline chloride and its action was reversed by raising carbamoylcholine but not Ca2+ concentration; it is therefore doubtful that procaine acts by blocking Ca2+ channels. In media without added Ca2+, Mn2+ increased cyclic GMP accumulation but did not decrease thyrotropin-induced cyclic AMP accumulation or iodine secretion, which suggests that cyclic GMP cannot be the sole mediator of the latter two effects of carbamoylcholine.  相似文献   

13.
A significant proportion of the steroidogenic response of isolated rat adrenocortical cells to dibutyryl cyclic AMP does not require extracellular calcium, and this component is profoundly depressed by low concentrations of the putative calcium antagonist, TMB-8. The inhibition is reversed by either the readdition of calcium or the calcium ionophore A23187. The steroidogenic response to pregnenolone, whose mode of action does not require calcium, was not depressed by TMB-8. Corticotropin (ACTH)-induced steroidogenesis, which requires extracellular calcium, was markedly depressed by TMB-8, although enhanced cyclic AMP formation is only slightly depressed by this drug. Adrenal cortical microsomes possess an ATP-dependent 45calcium (45Ca2+) uptake system which responded to EGTA with a rapid efflux of 45Ca2+; EGTA-induced calcium efflux from this microsomal fraction was markedly reduced by a concentration of TMB-8 that blocked dibutyryl cyclic AMP-evoked steroidogenesis. TMB-8 produced a smaller but significant reduction of EGTA-facilitated 45Ca2+ efflux from a mitochondrial-enriched fraction. We interpret these results to mean that TMB-8 blocks the steroidogenic effect of dibutyryl cyclic AMP by interfering with the mobilization of a cellular pool of calcium that is probably localized to the endoplasmic reticulum. The physiological implications of these findings in relation to the complex interactions between calcium and cyclic AMP in adrenal steroidogenesis are discussed.  相似文献   

14.
The effects of parathyroid hormone (PTH) on concentrations of cyclic AMP and cyclic GMP were investigated in isolated renal cortical tubules from hamsters. Efflux of 45Ca from tubules was compared to temporal changes in both cyclic nucleotide concentrations. A rapid increase in cyclic AMP occurred following addition of PTH which was maximal by 1 min but decreased over the next 4 min period. Cyclic GMP concentrations were not significantly altered at 1 min but increased between 1 and 5 min from basal levels. Concentrations of both nucleotides remained significantly elevated from basal levels between 5 and 15 min following PTH. Efflux of 45Ca was increased by PTH with time-course changes closely paralleling changes in cyclic GMP concentrations. Changes in both cyclic AMP and cyclic GMP were related to PTH concentrations of the incubation media and were increased by addition of theophylline. Increasing the calcium concentration from 1 to 3 mM did not significantly alter the effect of PTH on cyclic AMP, however, cyclic GMP concentrations were further increased.  相似文献   

15.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

16.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

17.
Regulation of guanylate cyclase in guinea-pig islets of Langerhans   总被引:1,自引:0,他引:1  
1. Guanylate cyclase activity was determined in homogenates of guinea-pig islets of Langerhans by measurement of the conversion of [alpha-(32)P]GTP into cyclic [(32)P]GMP, the reaction products being separated on columns of neutral alumina. 2. The pH optimum of the enzyme was 7.3; it showed a requirement for bivalent cations, the effectiveness of the cations tested being Mn(2+)>Ca(2+)>Mg(2+). 3. About 70% of enzyme activity was sedimented by centrifugation at 105000g for 60min; activity was increased 2.3-fold by treatment of homogenates with 0.1% Triton X-100. 4. Guanylate cyclase activity of homogenates was increased by acetylcholine, secretin or pancreozymin, but was inhibited by adrenaline, noradrenaline or ATP. Insulin, glucagon, prostaglandins E(1) or E(2), glucose, F(-), diazoxide or glibenclamide were ineffective. 5. Determination of cyclic GMP amounts in islets by radioimmunoassay showed a basal concentration of 2.0pmol/mg of protein, which was increased by incubation of the islets in the presence of acetylcholine or the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, but was unaffected by glucose. 6. Dibutyryl cyclic GMP had significant stimulatory effects on rates of insulin biosynthesis in isolated rat islets of Langerhans. 7. These results suggest a possible role for cyclic GMP in the regulation of insulin biosynthesis and secretion.  相似文献   

18.
19.
The addition of phenylephrine or vasopressin to isolated hepatocytes resulted in an efflux of calcium. The intracellular source of this calcium was determined by measuring the calcium released upon the sequential additions of an uncoupling agent and the Ca2+ ionophore A23187 to control and hormone-treated cells. The release promoted by these agents was used as an estimate of the calcium content of the mitochondria and endoplasmic reticulum, respectively. The validity and limitations of this method are critically evaluated. The source of the calcium mobilized by the hormones was found to depend on the intracellular calcium distribution. When the amount of total cell-releasable Ca2+ was low (less than 0.9 nmol/mg cell dry weight), the endoplasmic reticulum represented the major cellular calcium pool and was also the predominant pool mobilized by the hormone. As the cell calcium content was increased, the endoplasmic reticulum attained its maximum capacity and the mitochondria sequestered increasing amounts of calcium. Under these conditions, the hormones mobilized calcium from the mitochondria with minimal effects on the endoplasmic reticulum calcium pool. These results suggest that more than one hormone-induced Ca2+-releasing agent may be formed. Both the total amount and the rate of calcium released from the cell under the influence of hormones was independent of the cell calcium content. The appearance of hormone-releasable Ca2+ in the extracellular medium showed a lag period of 5 to 10 s, during which a rapid increase of phosphorylase activity was observed. In contrast, the mobilization of a comparable amount of calcium by carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed no significant lag, but the activation of phosphorylase was slower. A kinetic analysis of the hormone-releasable Ca2+ indicated a rapid onset with a peak increase of cytosolic free Ca2+ between 5 and 10 s prior to release of Ca2+ from the cell. The results suggest that an early action of the hormone is the inhibition of the plasma membrane Ca2+ efflux pump.  相似文献   

20.
Fast calcium events occurring in cytoplasmic organelles after a single electrical stimulus were investigated by electron spectroscopic imaging (an electron microscope technique that reveals total calcium with high sensitivity and spatial resolution) in quick frozen presynaptic terminals of the frog neuromuscular junction. In resting preparations synaptic vesicles showed a prominent calcium signal whereas mitochondria were mostly negative and only some of the cisternae of the endoplasmic reticulum were clearly positive. In preparations quick frozen 10 ms after the application to the nerve of a single, supramaximal electric stimulus, no obvious change was observed in synaptic vesicles, while calcium levels rose to high values in the endoplasmic reticulum cisternae and in the matrix of mitochondria. Voltage-induced influx of Ca(2+) within synaptic terminals appears therefore to induce an extremely rapid uptake into selected organelles. The possible physiological role of this response is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号