首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the results of a solid-state (31)P nuclear magnetic resonance (NMR) spectroscopic investigation of the acidocalcisome organelles from Trypanosoma brucei (bloodstream form), Trypanosoma cruzi and Leishmania major (insect forms). The spectra are characterized by a broad envelope of spinning sidebands having isotropic chemical shifts at approximately 0, -7 and -21 ppm. These resonances are assigned to orthophosphate, terminal (alpha) phosphates of polyphosphates and bridging (beta) phosphates of polyphosphates, respectively. The average polyphosphate chain length is approximately 3.3 phosphates. Similar results were obtained with whole L. major promastigotes. (31)P NMR spectra of living L. major promastigotes recorded under conventional solution NMR conditions had spectral intensities reduced with respect to solution-state NMR spectra of acid extracts, consistent with the invisibility of the solid-state phosphates. These results show that all three parasites contain large stores of condensed phosphates which can be visualized by using magic-angle spinning NMR techniques.  相似文献   

2.
The tubulin genes of Trypanosoma cruzi   总被引:1,自引:0,他引:1  
The organization of the alpha- and beta-tubulin genes in the genome of Trypanosoma cruzi have been analysed by Southern blotting using tubulin probes derived from Trypanosoma brucei. The tubulin array appears to be more complex in this organism than in other members of the same family. Some tubulin genes are tightly clustered in an alternating (alpha-beta)n array with a basic repeat unit length of 4.3 kb. However, other pairs of alternating alpha- and beta-tubulin sequences appear to be physically separated from the basic group. This finding indicates that the tubulin gene cluster present in T. cruzi is less perfectly conserved than in T. brucei. T. (Herpetosoma) rangeli is similar to T. (Schizotrypanum) cruzi in its tubulin gene organization whereas most of these genes are tandemly clustered in the genome of T. (Trypanozoon) evansi, with a basic repeat unit length of 3.6 kb as previously described for T. (Trypanozoon) brucei. Two overlapping recombinant clones containing T. cruzi tubulin sequences have been isolated from a genomic cosmid library of T. cruzi epimastigotes using the T. brucei tubulin probes. Partial sequencing of the T. cruzi beta-tubulin gene has confirmed its identity and shows more than 70% homology with the sea urchin, chicken and T. b. rhodesiense beta-tubulin reported gene sequences. Analysis of tubulin gene organization through the parasite life cycle does not show evidence of major rearrangements within the repeat unit. Several T. cruzi strains and cloned lines whilst sharing the 4.3-kb tubulin repeat unit, exhibited very variable tubulin gene organization with tubulin probes. These striking differences in the organization of this structural gene among T. cruzi strains and cloned lines suggest that the heterogeneity previously reported in parasite populations may be related to a very dynamic, diploid genome.  相似文献   

3.
High-resolution 303.6 MHz (31)P NMR spectra have been obtained of perchloric acid extracts of Plasmodium berghei trophozoites, Toxoplasma gondii tachyzoites, and Cryptosporidium parvum oocysts. Essentially complete resonance assignments have been made based on chemical shifts and by coaddition of authentic reference compounds. Signals corresponding to inorganic pyrophosphate were detected in all three species. In T. gondii and C. parvum, additional resonances were observed corresponding to linear triphosphate as well as longer chain polyphosphates. Spectra of P. berghei and T. gondii also indicated the presence of phosphomonoesters and nucleotide phosphates. We also report that the pyrophosphate analog drug, risedronate (used in bone resorption therapy), inhibits the growth of C. parvum in a mouse xenograft model. When taken together, our results indicate that all the major disease-causing apicomplexan parasites contain extensive stores of condensed phosphates and that as with Plasmodium falciparum and T. gondii, the pyrophosphate analog drug risedronate is an inhibitor of C. parvum cell growth.  相似文献   

4.
5.
As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.  相似文献   

6.
Inorganic polyphosphate (polyP) has been identified and measured in different stages of Trypanosoma cruzi. Millimolar levels (in terms of P(i) residues) in chains of less than 50 residues long, and micromolar levels in chains of about 700--800 residues long, were found in different stages of T. cruzi. Analysis of purified T. cruzi acidocalcisomes indicated that polyPs were preferentially located in these organelles. This was confirmed by visualization of polyPs in the acidocalcisomes using 4',6-diamidino-2-phenylindole. A rapid increase (within 2--4 h) in the levels of short and long chain polyPs was detected during trypomastigote to amastigote differentiation and during the lag phase of growth of epimastigotes (within 12--24 h). Levels rapidly decreased after the epimastigotes resumed growth. Short and long chain polyP levels rapidly decreased upon exposure of epimastigotes to hypo-osmotic or alkaline stresses, whereas levels increased after hyperosmotic stress. Ca(2+) release from acidocalcisomes by a combination of ionophores (ionomycin and nigericin) was associated with the hydrolysis of short and long chain polyPs. In agreement with these results, acidocalcisomes were shown to contain polyphosphate kinase and exopolyphosphatase activities. Together, these results suggest a critical role for these organelles in the adaptation of the parasite to environmental changes.  相似文献   

7.
In a 17-kb genomic fragment of Trypanosoma cruzi chromosome XX, we identified three tandemly linked genes coding for CX(2)CX(4)HX(4)C zinc finger proteins. We also showed that similar genes are present in T. brucei and Leishmania major, sharing three monophyletic groups among these trypanosomatids. In T. cruzi, TcZFP8 corresponds to a novel gene coding for a protein containing eight zinc finger motifs. Molecular cloning of this gene and heterologous expression as a fusion with a His-tag were performed in Escherichia coli. The purified recombinant protein was used to produce antibody in rabbits. Using Western blot analysis, we observed the presence of this protein in all three forms of the parasite: amastigote, trypomastigote and epimastigote. An analysis of cytoplasmic and nuclear cell extracts showed that this protein is present in nuclear extracts, and indirect immunofluorescence microscopy confirmed the nuclear localization of TcZFP8. Homologues of TcZFP8 in T. brucei are apparently absent, while one candidate in L. major was identified.  相似文献   

8.
Trypanosomes are unicellular eukaryotes that cause disease in humans and other mammals. Trypanosoma cruzi and Trypanosoma brucei are the causative agents, respectively, of Chagas disease in the Americas and sleeping sickness in sub-Saharan Africa. To better comprehend the interaction of these parasites with their hosts, understanding the mechanisms involved in the generation of genetic variability is critical. One such mechanism is mismatch repair (MMR), which has a crucial, evolutionarily conserved role in maintaining the fidelity of DNA replication, as well as acting in other cellular processes, such as DNA recombination. Here we have attempted to complement T. brucei MMR through the expression of MSH2 from T. cruzi. Our results show that T. brucei MSH2-null mutants are more sensitive to hydrogen peroxide (H2O2) than wild type cells, suggesting the involvement of MSH2 in the response to oxidative stress in this parasite. This phenotype is reverted by the expression of either the T. cruzi or the T. brucei MSH2 protein in the MSH2-null mutants. In contrast, MMR complementation, as assessed by resistance to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and microsatellite instability, was not achieved by the heterologous expression of T. cruzi MSH2. This finding, associated to the demonstration that mutation of MLH1, another component of the MMR system, did not affect sensitivity of T. brucei cells to H2O2, suggests an additional role of MSH2 in dealing with oxidative damage in these parasites, which may occur independently of MMR.  相似文献   

9.
The glycosomes of trypanosomatids are essential organelles that are evolutionarily related to peroxisomes of other eukaryotes. The peroxisomal RING proteins-PEX2, PEX10 and PEX12-comprise a network of integral membrane proteins that function in the matrix protein import cycle. Here, we describe PEX10 and PEX12 in Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi. We expressed GFP fusions of each T. brucei coding region in procyclic form T. brucei, where they localized to glycosomes and behaved as integral membrane proteins. Despite the weak transmembrane predictions for TbPEX12, protease protection assays demonstrated that both the N and C termini are cytosolic, similar to mammalian PEX12. GFP fusions of T. cruzi PEX10 and L. major PEX12 also localized to glycosomes in T. brucei indicating that glycosomal membrane protein targeting is conserved across trypanosomatids.  相似文献   

10.
The karyotype and ploidy of Trypanosoma cruzi.   总被引:9,自引:1,他引:8       下载免费PDF全文
Little is known of the number or organization of chromosomes in Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease in man in the New World. Straightforward cytogenetic analysis is precluded because trypanosome chromosomes fail to condense during the cell cycle. We have size-fractionated the chromosome-sized DNA molecules of representative T. cruzi strains by pulsed field gradient (PFG) gel electrophoresis and located several housekeeping genes by Southern blotting using cDNA probes from the related trypanosome T. brucei. We show that DNA molecules from homologous chromosomes of T. cruzi migrate differently in the PFG system and infer that T. cruzi epimastigotes are at minimum diploid. In contrast to T. brucei, mini-chromosomes are absent in T. cruzi. All the housekeeping genes studied hybridize to DNA molecules which can be resolved in the PFG system, suggesting that T. cruzi may have no chromosomes larger than a few megabase pairs.  相似文献   

11.
Contrary to Leishmania spp. and Trypanosoma cruzi, Trypanosoma brucei bloodstream forms do not synthesise their own sterols but take these compounds in the form of cholesterol directly from the mammalian host. However, procyclic insect stages synthesise ergosterol rather than cholesterol. Here the sub-cellular localisation of the first committed enzyme of this pathway of isoprenoid synthesis 3-hydroxy-3-methylglutaryl-coenzyme A reductase in T. brucei procyclics (0.9 nmol x min(-1) x mg(-1) protein) was carried out using both cell-fractionation by isopycnic centrifugation and digitonin-titration experiments. The majority of the NADP+-linked 3-hydroxy-3-methylglutaryl-coenzyme A reductase is a soluble enzyme present in the mitochondrial matrix with some additional membrane-associated activity in glycosomes and possibly in the endoplasmic reticulum. It is suggested that the active metabolism of threonine and/or leucine as preferred 2-carbon source for the incorporation of acetyl units into lipids and/or sterols in the mitochondrion of T. brucei procyclics is the explanation for a high 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in these protozoan organelles.  相似文献   

12.
Chagas disease is caused by Trypanosoma cruzi and is endemic to North, Central and South American countries. Current therapy against this disease is only partially effective and produces adverse side effects. Studies on the metabolic pathways of T. cruzi, in particular those with no equivalent in mammalian cells, might identify targets for the development of new drugs. Ceramide is metabolized to inositolphosphoceramide (IPC) in T. cruzi and other kinetoplastid protists whereas in mammals it is mainly incorporated into sphingomyelin. In T. cruzi, in contrast to Trypanosoma brucei and Leishmania spp., IPC functions as lipid anchor constituent of glycoproteins and free glycosylinositolphospholipids (GIPLs). Inhibition of IPC and GIPLs biosynthesis impairs differentiation of trypomastigotes into the intracellular amastigote forms. The gene encoding IPC synthase in T. cruzi has been identified and the enzyme has been expressed in a cell-free system. The enzyme involved in IPC degradation and the remodelases responsible for the incorporation of ceramide into free GIPLs or into the glycosylphosphatidylinositols anchoring glycoproteins, and in fatty acid modifications of these molecules of T. cruzi have been understudied. Inositolphosphoceramide metabolism and remodeling could be exploited as targets for Chagas disease chemotherapy.  相似文献   

13.
Trypanothione [T(SH)2], the major redox mediator in pathogenic trypanosomatids, is synthetized stepwise by two distinct enzymes in Crithidia fasciculata, while in Trypanosoma cruzi a single enzyme catalyzes both steps. A full-length reading frame presumed to encode trypanothione synthetase (TryS) was obtained by PCR using DNA of T. brucei as template and primers based on fragments of putative TryS genes. The recombinant protein produced by E. coli Origami (DE3) was purified to homogeneity by chelate and ion exchange chromatography. The enzyme catalyzed both reactions of T(SH)2 biosynthesis. Thus, T(SH)2 synthesis appears to be similar in African (T. brucei) and New World (T. cruzi) trypanosomes but distinct from that of Crithidia.  相似文献   

14.
15.
16.
17.
High field (31)P nuclear magnetic resonance spectroscopy showed that inorganic pyrophosphate (P(2)O(7)(4-)) is more abundant than ATP in Trypanosoma cruzi, the causative agents of Chagas' disease. These results were confirmed by specific analytical assays, which showed that in epimastigotes, the concentrations of inorganic pyrophosphate and ATP were 194.7 +/- 25.9 and 37.6 +/- 5.5 nmol/mg of protein, respectively, and for the amastigote form, the corresponding concentrations were 358.0 +/- 17.0 and 36.0 +/- 1.9 nmol/mg of protein. High performance liquid chromatographic analysis of perchloric acid extracts of epimastigotes labeled for 3 h with (32)P-orthophosphate showed a significant incorporation of the precursor into inorganic pyrophosphate. Inorganic pyrophosphate was not uniformly distributed in T. cruzi but was shown by (31)P-NMR and chemical analysis to be particularly associated with acidocalcisomes, organelles shown previously to contain large amounts of phosphorus and various elements. Electron microscopy analysis of pyrophosphatase-treated permeabilized epimastigotes showed disappearance of the electron density of the acidocalcisomes. Nonmetabolizable analogs of pyrophosphate, currently used for the treatment of bone resorption disorders, selectively inhibited the proliferation of intracellular T. cruzi amastigotes and produced a profound suppression in the number of circulating trypomastigotes in mice with an acute infection of T. cruzi, offering a potentially new route to chemotherapy.  相似文献   

18.
The glyoxalase system, comprizing glyoxalase I and glyoxalase II, is a ubiquitous pathway that detoxifies highly reactive aldehydes, such as methylglyoxal, using glutathione as a cofactor. Recent studies of Leishmania major glyoxalase I and Trypanosoma brucei glyoxalase II have revealed a unique dependence upon the trypanosomatid thiol trypanothione as a cofactor. This difference suggests that the trypanothione-dependent glyoxalase system may be an attractive target for rational drug design against the trypanosomatid parasites. Here we describe the cloning, expression and kinetic characterization of glyoxalase I from Trypanosoma cruzi. Like L. major glyoxalase I, recombinant T. cruzi glyoxalase I showed a preference for nickel as its metal cofactor. In contrast with the L. major enzyme, T. cruzi glyoxalase I was far less fast-idious in its choice of metal cofactor efficiently utilizing cobalt, manganese and zinc. T. cruzi glyoxalase I isomerized hemithio-acetal adducts of trypanothione more than 2400 times more efficiently than glutathione adducts, with the methylglyoxal adducts 2-3-fold better substrates than the equivalent phenylglyoxal adducts. However, glutathionylspermidine hemithioacetal adducts were most efficiently isomerized and the glutathionylspermidine-based inhibitor S-4-bromobenzylglutathionylspermidine was found to be a potent linear competitive inhibitor of the T. cruzi enzyme with a K(i) of 5.4+/-0.6 microM. Prediction algorithms, combined with subcellular fractionation, suggest that T. cruzi glyoxalase I localizes not only to the cytosol but also the mitochondria of T. cruzi epimastigotes. The contrasting substrate specificities of human and trypanosomatid glyoxalase enzymes, confirmed in the present study, suggest that the glyoxalase system may be an attractive target for anti-trypanosomal chemotherapy.  相似文献   

19.
Nuclear extrachromosomal DNA elements have been identified in several kinetoplastids such as Leishmania and Trypanosoma cruzi, but never in Trypanosoma brucei. They can occur naturally or arise spontaneously as the result of sublethal drug exposure of parasites. In most cases, they are represented as circular elements and are mitotically unstable. In this study we describe the presence of circular DNA in the nucleus of Trypanosoma brucei. This novel type of DNA was termed NR-element (NlaIII repeat element). In contrast to drug-induced episomes in other kinetoplastids, the T. brucei extrachromosomal NR-element is not generated by drug selection. Furthermore, the element is stable during mitosis over many generations. Restriction analysis of tagged NR-element DNA, unusual migration patterns during pulsed field gel electrophoresis (PFGE) and CsCl/ethidium bromide equilibrium centrifugation demonstrates that the NR-element represents circular DNA. Whereas it has been found in all field isolates of the parasites we analysed, it is not detectable in some laboratory strains notably the genome reference strain 927. The DNA sequence of this element is related to a 29 bp repeat present in the subtelomeric region of VSG-bearing chromosomes of T. brucei. It has been suggested that this subtelomeric region is part of a transition zone on chromosomes separating the relatively stable telomeric repeats from the recombinationaly active region downstream of VSG genes. Therefore, we discuss a functional connection between the occurrence of this circular DNA and subtelomeric recombination events in T. brucei.  相似文献   

20.
The single flagellum of the protozoan parasite Trypanosoma brucei is attached along the length of the cell body by a complex structure that requires the FLA1 protein. We show here that inhibition of FLA1 expression by RNA interference in procyclic trypanosomes causes flagellar detachment and prevents cytokinesis. Despite being unable to divide, these cells undergo mitosis and develop a multinucleated phenotype. The Trypanosoma cruzi FLA1 homolog, GP72, is unable to complement either the flagellar detachment or cytokinesis defects in procyclic T. brucei that have been depleted of FLA1 by RNA interference. Instead, GP72 itself caused flagellar detachment when expressed in T. brucei. In contrast to T. brucei cells depleted of FLA1, procyclic T. brucei expressing GP72 continued to divide despite having detached flagella, demonstrating that flagellar attachment is not absolutely necessary for cytokinesis. We have also identified a FLA1-related gene (FLA2) whose sequence is similar but not identical to FLA1. Inhibition of FLA1 and FLA2 expression in bloodstream T. brucei caused flagellar detachment and blocked cytokinesis but did not inhibit mitosis. These experiments demonstrate that the FLA proteins are essential and suggest that in procyclic T. brucei, the FLA1 protein has separable functions in flagellar attachment and cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号