首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The non-transformed, molybdate-stabilized chick oviduct cytosol progesterone receptor was purified approx. 7000-fold using biospecific affinity resin (NADAC-Sepharose), DEAE-Sephacel chromatography and gel filtration on Bio-Gel A-0.5m agarose. The purified preparation contained progesterone receptor which sedimented as a 7.9S molecule, had a Stokes' radius of 7.5 nm, was composed of three major peptides corresponding to Mr 108,000, 90,000 and 79,000. Upon removal of molybdate, the purified [3H]progesterone-receptor complex could be transformed from the 8S form to a 4S form by exposure to 23 degrees C or by an incubation with 10 mM ATP at 0 degrees C. The purified thermally transformed receptor could be adsorbed to columns of ATP-Sepharose. No cytosol factor(s) appeared to be required for the 8S to 4S transformation of purified receptor or for its subsequent binding to ATP-Sepharose. Incubation of purified non-transformed receptor preparation with [gamma-32P]ATP and cAMP-dependent protein kinase led to incorporation of radioactivity in all the three major peptides at serine residues. The results of this study show for the first time that purified 8S progesterone receptor can be phosphorylated in vitro by a cAMP-dependent protein kinase, and that it can be transformed to a 4S form by 0 degrees C incubation with 10 mM ATP.  相似文献   

2.
Molecular properties of nuclear aromatic hydrocarbon (Ah) receptor from Hepa-1c1c9 (Hepa-1) cells were assessed by velocity sedimentation on sucrose gradients and by gel permeation chromatography on Sephacryl S-300. Nuclear Ah receptor was obtained by exposing intact cells to [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 1 h at 37 degrees C in culture followed by extraction of receptor from nuclei with buffers containing 0.5 M KCl. The nuclear Ah receptor was compared to the cytosolic Ah receptor from the same cells. Under conditions of low ionic strength, the Ah receptor from Hepa-1 cytosol sedimented as a single 9.4 +/- 0.63 S binding peak that had a Stokes radius of 7.1 +/- 0.12 nm and an apparent relative molecular mass of 271,000 +/- 16,000. After prolonged (24 h) exposure to high ionic strength (0.5 M KCl), cytosol labeled with [3H]TCDD exhibited two specific binding peaks. The large form of cytosolic Ah receptor seen under high ionic strength conditions sedimented at 9.4 +/- 0.46 S, had a Stokes radius of 6.9 +/- 0.19 nm, and an apparent Mr 267,000 +/- 15,000. The smaller ligand-binding subunit generated by exposing cytosol to 0.5 M KCl sedimented at 4.9 +/- 0.62 S, had a Stokes radius of 5.0 +/- 0.14 nm, and an apparent Mr 104,000 +/- 12,000. Nuclear Ah receptor, analyzed under high ionic strength conditions, sedimented at 6.2 +/- 0.20 S, had a Stokes radius of 6.8 +/- 0.19 nm, and an apparent Mr 176,000 +/- 7000. Nuclear Ah receptor from rat H4IIE hepatoma cells was analyzed and found to have physicochemical characteristics identical to those of nuclear Ah receptor from the mouse Hepa-1 cells. The molecular mass of Hepa-1 nuclear Ah receptor was found to be statistically different from both the Mr approximately 267,000 cytosolic Ah receptor and the Mr approximately 104,000 subunit which were present in cytosol under high ionic strength conditions. Hepa-1 nuclear Ah receptor could not be converted to a smaller ligand-binding subunit by treatment with alkaline phosphatase, ribonuclease, or sulfhydryl-modifying reagents or prolonged exposure to 1.0 M KCl. Cytosolic Ah receptor from Hepa-1 cells was "transformed" by heating at 25 degrees C in vitro into a form with high affinity for DNA-cellulose. The transformed cytosolic Ah receptor, when analyzed under conditions of high ionic strength, sedimented at approximately 6 S, had a Stokes radius of approximately 6.7 nm, and an apparent Mr approximately 167,000.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Treatment of intact GH1 cells with sodium molybdate inhibits the subsequent rate of nuclear accumulation of hormone-occupied glucocorticoid and estrogen receptors. Cells were incubated at 23 degrees C for 1 h with 30 mM molybdate and then for up to 30 min with [3H]triamcinolone acetonide or [3H]estradiol in the continued presence of molybdate. Although molybdate did not affect the rate of receptor occupancy with either steroid, cells treated with molybdate had more occupied cytosolic and fewer occupied nuclear receptors than control cells. For the glucocorticoid receptor, cells treated with molybdate had more 10 S and fewer 4 S cytosolic receptors than control cells. In low salt cytosol molybdate inhibits the temperature-mediated subunit dissociation of occupied 10 S glucocorticoid receptor. These results suggest that a hormone-mediated dissociation of an intracellular 10 S oligomeric glucocorticoid receptor form to its 4 S subunits is required prior to accumulation of occupied receptors in the nuclear fraction. In cells incubated at 37 degrees C for 1 h or longer with [3H]triamcinolone acetonide, molybdate shifts the steady state intracellular distribution of receptor toward the 10 S cytosolic receptor form, consistent with the interpretation that molybdate affects the rapidly exchanging subunit equilibrium between the 10 S and 4 S cytosolic forms by slowing the rate of 10 S receptor dissociation. Molybdate prevents loss of glucocorticoid-occupied 10 S but not 4 S receptors in heated cytosol by stabilizing the relatively protease-resistant 10 S receptor. Since molybdate stabilizes 10 S oligomeric steroid receptors in vitro, the effects of molybdate on nuclear accumulation of occupied receptors in intact cells support the intracellular existence and physiological relevance of 10 S glucocorticoid and estrogen receptors. These results support a general model for steroid receptor activation in which binding of hormone promotes dissociation of intracellular 8-10 S oligomeric receptors to their DNA-binding subunits.  相似文献   

4.
A new antiestrogen affinity ligand for the covalent labeling of estrogen receptors, [3H]desmethylnafoxidine aziridine, has been used to investigate the salt- and temperature-independent formation of DNA-binding estrogen receptor forms from untransformed (300 kilodaltons) receptor. Calf uterine estrogen receptor proteins labeled with [3H]estradiol or [3H]desmethylnafoxidine aziridine were quantitatively transformed (greater than 90%) to their DNA-binding configuration in low ionic strength buffers by brief exposure to 3 M urea at 0 C. The urea effect was hormone-dependent and partially reversible. The transformed receptors were purified (ca 250-fold) by affinity chromatography on single-stranded DNA-agarose in the continued presence of 3 M urea to prevent transformation reversal. Scatchard analyses revealed a single class of high affinity radioligand binding sites (Kd = 0.34 nM) unchanged by urea-induced transformation and purification. The DNA-binding receptor form labeled with [3H]desmethylnafoxidine aziridine was stable as a probable dimer in 3 M urea with 0.4 M KCl and displayed no evidence of size (Stokes radius 7.3 to 7.5 nm; 4.2 to 4.3 S; Mr = 136,800) heterogeneity. Sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis indicated the presence of an intact 67 kDa steroid-binding receptor subunit. Reverse-phase chromatography of the covalently labeled receptor on C4 and phenyl stationary phases revealed no evidence of structural heterogeneity. The surface charge of the estrogen- and antiestrogen-receptor complexes, however, was distinctly different in both the presence and absence of 3 M urea. Thus, exposure to urea was an effective salt- and temperature-independent means for achieving the complete transformation of receptor to its stable DNA-binding dimer configuration. The ligand-induced differences in receptor surface charge and the urea effects on DNA-binding (but not hormone-binding) suggest that both electrostatic and hydrophobic or hydrogen bonding receptor domains are influenced by ligand binding.  相似文献   

5.
Aliquots of rat liver cytosol glucocorticoid-receptor complexes (GRc) were transformed by an incubation with 8-10 mM ATP at 0 degrees C and were compared with those transformed by an exposure to 23 degrees C. The extent of receptor transformation was measured by chromatography of the samples over columns of DEAE-Sephacel. The ATP-transformed complexes, like those which were heat-transformed, exhibited lower affinity for the positively charged ion-exchange resin and were eluted with 0.12 M KCl (peak-I): the nontransformed complexes appeared to possess higher affinity and required 0.21 M KCl (peak II) for their elution. As expected, the receptor in the peak-I exhibited the DNA-cellulose binding capacity and sedimented as 4S in sucrose gradients. Peak II contained an 8-9S glucocorticoid receptor (GR) form that showed reduced affinity for DNA-cellulose. Presence of sodium tungstate (5 mM) prevented both heat and ATP transformation of the GRc resulting in the elution of the complexes in the region of nontransformed receptors. When parallel experiments were performed, binding of the cytosol GRc to rat liver nuclei or DNA-cellulose was seen to increase 10-15 fold upon transformation by heat or ATP: tungstate treatment blocked this process completely. The transformed and nontransformed GRc were also differentially fractionated by (NH4)2SO4: tungstate-treated (nontransformed) receptor required higher salt concentration and was precipitated at 55% saturation. In addition, the GRc could be extracted from DNA-cellulose by an incubation of the affinity resin with sodium tungstate resulting in approximately 500-fold purification of the receptor with a 30% yield. These studies show that the nontransformed, and the heat-, salt-, and ATP-transformed GRc from the rat liver cytosol can be separated chromatographically, and that the use of tungstate facilitates the resolution of these different receptor forms. In addition, extraction of the receptor from DNA-cellulose by tungstate provides another new and efficient method of partial receptor purification.  相似文献   

6.
Steroid receptors exist in cytosol as 9S, non-DNA-binding species and as 4S (transformed) species that bind to DNA or nuclei. Labeling the progesterone receptor from rabbit uterine cytosol with [3H]progesterone in the presence of 10 mM sodium molybdate revealed a 9S species on sucrose gradient centrifugation. Without molybdate, the receptor sedimented as an intermediate species of 6S, which converted to 4S in 0.3 M NaCl. The 6S species could also be generated from the 4S species by dialysis. Dilution of the same 4S species gave only partial re-aggregation with 50% of the receptor remaining as 4S. Dialysis appeared to retain the association of a macromolecular aggregation factor present in cytosol. Serum did not seem to be the source of the aggregation factor, as perfusion of the uterine vasculature before excision did not affect the S value of the receptor. We tested whether RNA was involved by treating receptor with RNase A (100 µg/400 µl cytosol). While the molybdate-stabilized cytosol receptor (9S) was unaffected, RNase A partially (50%) converted the 6S form of receptor to 4S. RNase A also partially converted the re-aggregated form back to 4S. Protease inhibitors had no effect on this action of RNase. Formation of receptor-ribonucleotide protein particles may play a role in steroid action in the cell.  相似文献   

7.
Chicken oviduct progesterone receptor in cytosol was found to be transformed from the 8S to 4S form by incubation at 25 degrees C as well as by 0.3 M KCl in the absence of hormone. Heat transformation of ligand-free receptor took place at a much slower rate than that of ligand-bound receptor. The eventual percentage of transformation, however, was almost the same. The 4S form of the receptor transformed by KCl in the absence of hormone could bind to DNA-cellulose, but not to nuclei. However, upon exposure it acquired the ability to bind to nuclei. It was shown that the transformed ligand-free receptor could bind to progesterone to form the normal activated steroid-receptor complex. Conversely, when activated 4S progesterone-receptor complex was treated with DCC to peel off the hormone, a resulting ligand-free receptor was formed which behaved just like the KCl-transformed receptor in the absence of hormone.  相似文献   

8.
In the absence of salt the cytoplasmic glucocorticoid receptor of fetal rabbit lung sediments at 7 S while the nuclear receptor sediments at 4 S. However, if nuclear extracts are mixed with receptor-depleted cytosol preparations in dilute buffer solutions without added salt, the nuclear 4 S receptor sediments as a 7 S species similar to that observed for the cytoplasmic form under the same conditions suggesting an interaction of the nuclear receptor with other cytosol proteins rather than with itself. In addition, both cytoplasmic and nuclear receptors sediment at 4 S in 0.4 M KCl and a major fraction of the nuclear receptor has an agarose elution profile identical to that of the cytoplasmic receptor. Thus a major fraction of the nuclear receptors is indistinguishable from the cytoplasmic receptors by the methods used. Since the cytoplasmic receptor sediments at 4 S in 0.15 M KCl, it is suggested that in vivo the glucocorticoid receptor may exist as a 4 S species and that the 7 S form described previously may result from an interaction of the 4 S component with other cytosol proteins in hypotonic media. About 25% of the receptor present in nuclear extracts has an agarose elution profile different from that of the cytoplasmic receptor in 0.4 M KCl. This suggests that either the nuclear receptor associates with itself or other nuclear proteins or that more than one form of nuclear receptor exists. Earlier observations suggested that in the absence of hormone the glucocorticoid receptor is localized exclusively in the cytoplasm of lung cells and that the nuclear receptor is formed by a transfer of the cytoplasmic steroid-receptor complex into the nucleus. A prerequisite for this transfer seems to be a modification of the receptor to an active form which can bind to nuclei. This receptor transfomration, referred to in this paper as activation of the receptor, can occur in the absence of nuclei and is highly dependent on temperature and ionic strength. Cytoplasmic receptors activated either by heating or by exposure to high ionic strength are indistinguishable from nonactivated receptors by sucrose density gradient analysis or by agarose gel filtration in solutions containing 0.4 M KCl. Simiarly, no significant difference in the absence of salt is observed after activation by heating. These results suggest that activation of the cytoplasmic glucocorticoid receptor involves conformational changes which favor its transfer and/or binding to nuclear sites rather than conversion of a 4 S species to a faster-sedimenting form by dimerization or by addition of another protein unit as has been proposed for the activation of the estrogen receptor of the rat uterus.  相似文献   

9.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Using crude progesterone receptor preparations from T47D human breast cancer cells, we show by immunoprecipitation assay that receptor specifically and with high affinity recognizes the hormone response element (HRE) of the mouse mammary tumor virus (MMTV). The use of crude preparations minimizes alterations of receptors or loss of associated factors that may occur during purification. Specific binding was obtained at 1:1 molar ratios of receptor to DNA, and HRE sequences are recognized with an affinity at least 3 orders of magnitude greater than nonspecific DNA. We have compared the DNA-binding activities of different forms of progesterone receptors. The unliganded 8S cytosol receptor had low but detectable binding activity for MMTV DNA. Addition of hormone to cytosol produced a small but consistent 2.5-fold increase. In vitro methods of transforming cytosol receptors from an 8S to a 4S species failed to increase DNA-binding further. By contrast, 4S receptors bound by R5020 in whole cells and extracted from nuclei by salt, displayed a substantially higher (average, 11-fold) binding activity than an equal number of unliganded cytosol receptors. The dissociation constants for cytosol and nuclear receptor binding to MMTV DNA were similar (approximately 2 x 10(-9) M). Thus, nuclear receptors possess a higher capacity for binding to specific recognition sequences. These results suggest that hormone or a hormone-dependent mechanism increases the intrinsic DNA-binding activity of receptors independent of receptor transformation from 8S to 4S. Further experiments indicate that a nonreceptor activity in nuclear extracts can increase the sequence-specific DNA-binding activity of cytosol receptors. This activity is present in both T47D cells and receptor-negative MDA-231 cells. We conclude that the higher DNA-binding activity of the nuclear receptor-hormone complex is due in part to receptor interaction with other nuclear proteins or factors. Such interactions may function to maintain receptors in a disaggregated active complex or to stabilize their binding to specific DNA sites.  相似文献   

11.
The present study was undertaken to establish whether molecular events leading to binding, transformation-activation, and nuclear translocation of cytoplasmic uterine estrogen receptor described for cell-free systems also occur in intact uterine cells. Cell suspensions were incubated at 0 degrees C or 37 degrees C with estradiol (E2) and specific binding to intracellular receptors was measured. The data demonstrate that saturation of specific estrogen binding sites occurs within 60 min at 37 degrees C and within 22 h at 0 degrees C, with a total of approximately 24,000 to 30,000 receptor sites per cell. At equilibrium, the total number and subcellular distribution of receptor . estradiol (R . E2) complexes formed in cells incubated at 0 degrees C or 37 degrees C were identical. Scatchard analysis of the equilibrium binding data yielded the same association constants for cytoplasmic and nuclear R . E2 formed in intact cells incubated at either temperature. Sucrose density gradient analysis of nuclear and cytoplasmic R . E2 formed in intact cells at 0 degrees C or 37 degrees C showed that at both temperatures, the nuclear R . E2 had a 5 S sedimentation coefficient; at both temperatures, a 5 S cytosol R . E2 was detected; only in the 0 degrees C incubation, an additional 4 S cytosol R . E2 was found. These results suggest that the molecular interactions regulating the dynamics of estrogen binding in the intact cell are similar at both physiological and low temperatures.  相似文献   

12.
The glucocorticoid receptor from rat liver cytosol prepared in 2 ml buffer/g tissue sedimented at approximately 10 S in low salt density gradient centrifugation without molybdate. When the receptor was heated at 25 degrees C, both approximately 10 S and approximately 7 S forms were seen in low salt gradient. The approximately 10 S form was not capable of binding to DNA-cellulose and was stabilized by sodium molybdate, namely it corresponded to untransformed receptor. The approximately 7 S form was capable of binding to DNA-cellulose and regarded as transformed receptor. On the other hand, partially-purified transformed receptor labeled with [3H]dexamethasone-21-mesylate sedimented at approximately 5 S, which migrated as a approximately 94 kDa species in SDS-polyacrylamide gel electrophoresis. The reconstitution analysis of this partially-purified approximately 5 S receptor and liver cytosol, showed the shift to approximately 7 S form. RNase A or T1 converted approximately 7 S transformed form into approximately 5 S but it did not affect approximately 10 S untransformed form. 5-20 mM sodium molybdate also shifted approximately 7 S to approximately 5 S. These results indicate that the approximately 7 S transformed form of the glucocorticoid receptor observed in low salt conditions might be an oligomer, probably including both approximately 5 S steroid-binding component and RNA/ribonucleoprotein, and that molybdate dissociates these interactions in a specific manner.  相似文献   

13.
Immobilized metal ions have been used to characterize and locate metal ion-specific binding domains on the surface of the DNA-binding form of the estrogen receptor protein. Soluble estrogen receptors in calf uterine cytosol were labeled with [3H]estradiol and transformed to the DNA-binding configuration by brief exposure (30 min) to 3 M urea at 0-4 degrees C. The transformed receptors were purified in the presence of 3 M urea using single-stranded calf thymus DNA-agarose and characterized by high-performance size-exclusion chromatography (Stokes radius of 7.0-7.5 nm) and sucrose density gradient centrifugation (4.25 S) as dimers of 130,000 Da. Such receptor preparations subsequently labeled with [3H]desmethylnafoxidine aziridine by ligand exchange revealed one major peak of radioactivity (67 kDa) by sodium dodecyl sulfate polyacrylamide gradient gel electrophoresis. When analyzed by immobilized metal ion affinity chromatography on iminodiacetate (IDA)-agarose loaded with Cu(II), Ni(II), or Zn(II) ions, the receptor was bound with various degrees of affinity and metal interaction heterogeneity even in the presence of 0.5 M NaCl to neutralize electrostatic interactions. The intact DNA-binding receptor dimers were most tightly bound to IDA-Cu(II) and IDA-Ni(II), but were eluted with 100-200 nM imidazole. The receptors were bound less tightly to IDA-Zn(II), and four separate peaks of receptor activity were resolved by elution with 10, 15, 30, and 100 mM imidazole (n = 27). Limited trypsin digestion of the DNA-binding receptor forms resulted in the generation of a 2.8-nm fragment with both the DNA-binding and metal-binding domains removed or destroyed. These results demonstrate that DNA-binding estrogen receptor dimers have high affinity metal ion-binding sites which are located at the DNA-binding domain. We have found (Zn(II) interaction chromatography to be unique thus far in its ability to resolve separate DNA-binding receptor forms.  相似文献   

14.
The salt-induced (0.3 M KCl) transformation of the non-transformed, heterooligomeric 8S-form of the rabbit uterus cytosol progesterone receptor (PR) was analyzed by density gradient ultracentrifugation (8S----4S conversion) and DNA-cellulose chromatography (non-binding----binding forms). After 1 h treatment at 2 C, greater than 90% of agonist (R5020 or Org2058)-PR complexes were transformed, contrary to antagonist (RU486)-PR complexes, which did not undergo any transformation. Thus, there is stabilization of the non-transformed receptor form by RU486 as compared to the effect of agonist binding. The hydrodynamic parameters of both agonist- and antagonist-bound non-transformed receptors were similar and the calculated Mr were approximately 283,000 and approximately 293,000, respectively. In both cases, purification indicated the presence of a 90-kD non-hormone-binding protein associated with the hormone binding unit(s). Transformation of RU486-PR complexes occurred after exposure to high salt at increased temperature and was correlated to the dissociation of the 90-kD protein from the receptor. Both agonist- and antagonist-bound transformed forms of PR had apparent similar affinities for DNA-cellulose. Molybdate-stabilized and KCl-treated RU486-PR complexes were more stable, as assessed by steroid binding, than the corresponding R5020-PR complexes, arguing in favor of a stabilizing effect of both the 90-kD protein and RU486 against inactivation. These cell-free experiments support the concept that RU486 in the rabbit uterus system stabilizes the 8S non-DNA binding, non-transformed form of the receptor at low temperature. The possibility that impaired dissociation of the heterooligomeric receptor form is involved in the antiprogesterone activity of RU486 is discussed.  相似文献   

15.
Calf uterine cytosol contains an androgen receptor with a relative molecular mass of approx. 90,000. In this study we have analysed the structure and aggregation properties of the androgen receptor, using sucrose density gradient centrifugation on a vertical rotor (VTi65). In the presence of 10 mM NaCl the androgen receptor in whole cytosol sedimented at 8 S irrespective of the presence of molybdate. In 400 mM NaCl the receptor dissociated to a 4.3 S entity. In whole cytosol molybdate promoted a partial shift of the 4.3 S receptor into the aggregated 8 S state. The time of exposure of the receptor to molybdate and NaCl determined the proportion of receptor sedimentating at 8 S and 4.3 S. The DNA-binding form of the uterine androgen receptor when analysed under the conditions of the DNA-cellulose binding assay, sedimented at 6.5 S. Increasing concentrations of molybdate shifted its sedimentation coefficient gradually from 6.5 S to 4.5 S and in parallel reduced the DNA-binding capacity. Molybdate added to a partially purified, DNA-binding form of the androgen receptor did not promote receptor aggregation to faster sedimentating forms. This suggests that such preparations are devoid of an androgen receptor-aggregation factor. Indirect evidence for such a factor was obtained from reconstitution experiments with whole cytosol. Our results indicate that the DNA-binding form of the androgen receptor interacts with a cytosol factor to form the 8 S receptor complex. Molybdate has diverse effects: in the presence of the cytosol factor it stabilizes the 8S complex; in its absence molybdate prevents in a concentration-dependent way DNA-binding as well as reaggregation of the monomeric 4.3 S form.  相似文献   

16.
Our laboratory has previously reported that antiestrogen binding to molybdate-stabilized non-transformed estrogen receptor results in a larger form of the receptor in 0.3 M KCl when compared with estrogen bound receptor. Estradiol promoted the formation of monomers in the presence of 0.3 M KCl whereas antiestrogen appeared to promote dimer formation. We have extended these studies examining the rabbit uterine salt-transformed estrogen receptor partially purified by DEAE-cellulose chromatography. We previously demonstrated that estrogen receptor prepared in this way bound to different sites on partially deproteinized chromatin subfractions or reconstituted chromosomal protein/DNA fractions when the receptor was complexed with estrogen vs antiestrogen. Analysis of these receptor preparations indicated that DEAE-cellulose step-elution resulted in a peak fraction which sedimented as a single 5.9S peak in 5-20% sucrose density gradients containing 0.3 M KCl for receptor bound by the antiestrogens H1285 and trans-hydroxytamoxifen. However, receptor bound by estradiol sedimented as 4.5S. These receptor complexes bound DNA-cellulose indicating that these partially purified receptors were transformed. DEAE rechromatography or agarose gel filtration of the partially purified antiestrogen-receptor complexes resulted in significant dissociation of the larger complex into monomers. Incubations of 5.9S antiestrogen-receptor complexes with antibodies against nontransformed steroid receptor-associated proteins (the 59 and 90 kDa proteins) did not result in the interaction of this larger antiestrogen-receptor complex with these antibodies (obtained from L. E. Faber and D. O. Toft, respectively). Our results support the concept that antiestrogen binding induces a different receptor conformation which could affect monomer-dimer equilibrium, thus rendering the antiestrogen-receptor complex incapable of inducing complete estrogenic responses in target tissues.  相似文献   

17.
The glucocorticoid antagonist 17 alpha-methyltestosterone inhibits binding of the agonist [3H]triamcinolone acetonide ot the glocucorticoid receptor in cytosol prepared from rat pituitary tumor GH1 cells. Competitive binding studies indicate that the dissociation constant for 17 alpha-methyltestosterone is about 1 microM. After incubation of intact GH1 cells with 10 nM [3H]triamcinolone acetonide at 37 C and subsequent cell fractionation at 4 C, three glucocorticoid receptor forms are observed: cytosolic 10 S receptor, cytosolic 4 S receptor, and nuclear receptor. Concurrent incubation with 17 alpha-methyltestosterone reduces the amount of [3H]triamcinolone acetonide bound to each of these receptor forms. Ligand-exchange assays performed at 0 C in intact cells using [3H]triamcinolone acetonide show that the exchangeable antagonist is associated predominantly with cytosolic 10 S receptor. Immunochemical analysis using monoclonal antibody BuGR2 indicates that 17 alpha-methyltestosterone does not cause substantial accumulation of glucocorticoid receptors in GH1 cell nuclei and, when present together with agonist, reduces nuclear accumulation of receptor seen with agonist alone. Results from dense amino acid labeling studies show that unlike [3H]triamcinolone acetonide, 17 alpha-methyltestosterone does not reduce the total amount of cellular glucocorticoid receptor and does not reduce receptor half-life. These results are consistent with a model for glucocorticoid receptor transformation in which binding of agonist promotes the dissociation of an oligomeric 10 S cytosolic receptor protein to its DNA-binding 4 S subunit. The antagonist 17 alpha-methyltestosterone competes with agonist for binding to the 10 S cytosolic receptor but does not appear to promote dissociation of the oligomer, thus inhibiting agonist-mediated nuclear actions of the glucocorticoid receptor.  相似文献   

18.
Treatment of rat liver cytosol containing temperature-transformed, [3H]dexamethasone-bound receptors at 0 degree C with the sulfhydryl-modifying reagent methyl methanethiosulfonate (MMTS) inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol (DTT). When cytosol containing untransformed receptors is heated at 25 degrees C in the presence of MMTS, the 90-kDa heat shock protein dissociates from the receptor in the same manner as in the absence of MMTS, and the receptor will bind to DNA-cellulose if DTT is added subsequently at 0 degree C. These observations are consistent with the conclusion of Bodwell et al. (Bodwell, J. E., Holbrook. N. J. and Munck, A. (1984) Biochemistry 23, 1392-1398) that sulfhydryl moieties on the receptor are absolutely required for the receptor to bind to DNA, and they show that the sulfhydryl-modifying reagent does not inhibit the temperature-mediated dissociation of the heteromeric receptor complex that accompanies transformation to the DNA-binding state. When steroid-receptor complexes that are prebound to DNA-cellulose are exposed to MMTS, the steroid rapidly dissociates, but the receptor remains bound to DNA. Thus, the presence of steroid is not required for the receptor to remain bound to DNA in a high affinity manner. Treatment of cytosol containing transformed glucocorticoid-receptor complexes at 0 degrees C with 20 mM hydrogen peroxide also inactivates the DNA-binding activity of the receptor. The peroxide-induced inactivation is reversed by DTT. Incubation of rat liver cytosol containing untransformed glucocorticoid-receptor complexes at 25 degrees C with hydrogen peroxide prevents their transformation to the DNA-binding form as shown by their inability to bind to DNA-cellulose after addition of DTT. The presence of peroxide during heating of the cytosol also prevents dissociation of the receptor complex as assayed both by reduction in sedimentation value of the receptor and by dissociation of the 90-kDa heat shock protein from the steroid-binding protein. These results strongly suggest that critical sulfur moieties in the receptor complex must be in a reduced form for the temperature-mediated dissociation of the receptor to occur.  相似文献   

19.
In order to determine if different physicochemical properties exist among antihormone-receptor complexes, we have compared the interaction of the antiprogestin RU486 with progesterone receptor (PR) versus the triphenylethylene antiestrogen H1285 (4-(N,N-diethyl-aminoethoxy)-4'-methoxy-alpha-(p-hydroxyphenyl-alp ha'- ethylstilbene] with estrogen receptor (ER) from rabbit uterine tissue. Contrary to other reports, we observed no difference in the sedimentation properties of transformed PR (4S) when bound by the antagonist RU486 versus the progesterone agonist R5020 in either cytosol or DEAE partially-purified receptor preparations analyzed on sucrose gradients containing 0.3 M KCl. In addition, we found no difference in the sedimentation properties of these receptor preparations in the presence of 10 mM sodium molybdate: the nontransformed RU486-PR and nontransformed R5020-PR both sedimented as a 6S species. These same results were obtained when the receptor preparation and gradient analysis were performed in the absence of monothioglycerol. Likewise, there was no change in the sedimentation properties of the transformed PR when the receptor, partially purified in the absence of molybdate, was analyzed on sucrose gradients containing 10 mM sodium molybdate to prevent receptor alteration during centrifugation. From DNA-cellulose assays performed with partially purified PR in the absence of molybdate we determined that the 4S form of R5020-PR and RU486-PR is transformed receptor; whereas in the presence of molybdate, the 6S species is nontransformed. In contrast, we found a different pattern of sedimentation when comparing transformed antiestrogen-receptor complexes with transformed estrogen-receptor complexes. In this case, transformed H1285-ER sedimented as 6S and estradiol-ER sedimented as 4S. We conclude from these experiments that these two antihormones, RU486 and H1285, may have different mechanisms of action in their antagonism of steroid hormone action. Antiestrogen stabilizes the salt-transformed ER as a dimer while antiprogestin appears to permit dissociation of the oligomeric form of the receptor to the monomeric form.  相似文献   

20.
Abstract: The affinity of a series of catecholestrogens for 7S cytoplasmic receptor proteins from hypothalamus and pituitary gland of ovariectomised rats was assessed in vitro by a competitive charcoal binding assay at 4°C. The equilibrium dissociation constants ( K i) of catecholestrogens 4-hydroxyestradiol, 4-hydroxyethynylestradiol, 2-hydroxyestradiol, 2-hydroxyethynylestradiol, and 4-hydroxyestrone were of the same order ( K i 0.3–0.6 n m ) as those of estradiol and ethynylestradiol ( K i: 0.1 n m ). Methylation of 2-hydroxyestradiol led to a substantial loss of binding affinity. Tritium-labelled receptor complexes were demonstrated in KCl extracts of purified nuclei from pituitary and hypothalamic tissue 1 h after intravenous injection of 0.1 mCi tritiated 2- or 4-hydroxyestradiol. These macromolecular complexes sedimented in the 5-6S region of 5–20% (w/v) sucrose gradients containing 0.4 m -KCl. Further evidence for the translocation of estrogen receptors by catecholestrogens into the nuclei of rat pituitary and hypothalamus was the increase in nuclear receptor concentrations, measured by exchange assay, 1 h after the intraperitoneal injection of 0.1 mg unlabelled catecholestrogen. Administration of 4-hydroxyestradiol and 4-hydroxyethynylestradiol increased nuclear receptor concentrations to the same maximal levels as those following application of the same dose of estradiol or ethynylestradiol, whereas the respective 2-hydroxylated compounds exhibited only 60–70% of the maximal translocating capacity. The in vivo translocating capacities of the various catecholestrogens tested at this dose correlated well with their binding affinities for cytosol receptors determined in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号