首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motor units of the medial gastrocnemius (MG) and the single lateral gastrocnemius/soleus (LG/S) muscles of the opossum (Didelphis virginiana) were found to have uniformly slow contraction times relative to homologous muscles of the cat. Though a broad range of peak tetanic tensions was found among motor units from both muscles, most of the motor units were quite large relative to tension of the whole muscle. Comparison of the relative sizes of motor units showed that those of LG/S are significantly larger and slower than the units of MG. This suggests that the motor units of the two muscles may be differentially recruited during different behaviors. All of the MG and LG/S motor units were highly or moderately resistant to fatigue. Histochemical staining for NADH-diaphorase activity indicated consistently high levels of the enzyme in all of the fibers of both muscles. Apparently, all of the fast motor units consist of fast oxidative/glycolytic (FOG)-type muscle fibers. Our data provide functional evidence that the types of myofibrillar ATPase demonstrated by Brooke and Kaiser ('70), are not necessarily correlated to physiological classification of fiber types as slow oxidative (SO), fast oxidative/glycolytic (FOG), and fast glycolytic (FG) (Peter et al., '72). Perhaps compartmentalization of muscle fiber types may be a first step in the separation of muscles into multiple heads during the evolution of specialization to diverse locomotor habits among the mammals.  相似文献   

2.
The role of neuromuscular activity in maintaining the normal enzyme heterogeneity found in a predominantly fast mixed muscle was studied. Enzymatic profiles of single fibers in the adult cat medial gastrocnemius (MG) were examined after almost complete elimination of neuromuscular activity for 6 mo. Inactivity was achieved by spinal cord isolation (SI), i.e., spinal transection at T12-T13 and L7-S1 combined with bilateral dorsal rhizotomy between the two transection sites. Cross-sectional area and succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) activities were determined in a population of fibers identified in frozen serial cross sections. Each fiber was categorized as light or dark on the basis of its staining characteristics for qualitative myosin adenosinetriphosphatase (ATPase), alkaline preincubation, and its reaction to fast and slow myosin heavy chain (MHC) antibodies. SI resulted in a conversion of nearly all light (approximately 36% in the control) to dark ATPase fibers. Virtually all MG fibers in the SI cats reacted with the fast MHC antibody, whereas very few fibers reacted with slow MHC antibody. On the basis of fiber cross-sectional area, it was estimated that the MG atrophied by approximately 10% after SI. Compared with the mean of the dark and light ATPase fibers in control (weighted by the percent fiber type distribution), mean SDH activity was significantly lower (approximately 70%) and mean GPD activity was significantly higher (approximately 120%) in the SI cats. These data indicate that prolonged electrical silence of a mixed fast hindlimb extensor results in virtually all fibers expressing fast MHC as well as oxidative and glycolytic enzyme profiles normally observed in fast glycolytic fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To determine the level of coordination in succinate dehydrogenase (SDH) activity between plantaris motoneurons and muscle fibers, the soleus and gastrocnemius muscles were bilaterally excised in four cats to subject the plantaris to functional overload (FO). Five normal cats served as controls. Twelve weeks after surgery the right plantaris in each cat was injected with horseradish peroxidase to identify plantaris motoneurons. SDH activity then was measured in a population of plantaris motoneurons and muscle fibers in each cat. Control motoneurons and muscle fibers had similar mean SDH activities and a similar relationship between cell size and SDH activity. After FO, muscle fiber size doubled and mean muscle fiber SDH activity halved. Motoneuron mean SDH activity and size were unaffected by FO. Total SDH activity was unchanged in both the motoneurons and muscle fibers after FO. These changes suggest a selective increase in contractile proteins with little or no modulation of mitochondrial proteins in the muscle fibers, because total SDH activity was unchanged in muscle fibers after FO. These data demonstrate that although mean SDH activities were similar in control motoneurons and muscle fibers, mean SDH activities in these two cell types can change independently.  相似文献   

4.
The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.  相似文献   

5.
Chemomechanical transduction was studied in single fibers isolated from human skeletal muscle containing different myosin isoforms. Permeabilized fibers were activated by laser-pulse photolytic release of 1.5 mM ATP from p(3)-1-(2-nitrophenyl)ethylester of ATP. The ATP hydrolysis rate in the muscle fibers was determined with a fluorescently labeled phosphate-binding protein. The effects of varying load and shortening velocity during contraction were investigated. The myosin isoform composition was determined in each fiber by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. At 12 degrees C large variations (three- to fourfold) were found between slow and fast (2A and 2A-2B) fibers in their maximum shortening velocity, peak power output, velocity at which peak power is produced, isometric ATPase activity, and tension cost. Isometric tension was similar in all fiber groups. The ATP consumption rate increased during shortening in proportion to shortening velocity. At 12 degrees C the maximum efficiency was similar (0.21-0.27) for all fiber types and was reached at a higher speed of shortening for the faster fibers. In all fibers, peak efficiency increased to approximately 0.4 when the temperature was raised from 12 degrees C to 20 degrees C. The results were simulated with a kinetic scheme describing the ATPase cycle, in which the rate constant controlling ADP release is sensitive to the load on the muscle. The main difference between slow and fast fibers was reproduced by increasing the rate constant for the hydrolysis step, which was rate limiting at low loads. Simulation of the effect of increasing temperature required an increase in the force per cross-bridge and an acceleration of the rate constants in the reaction pathway.  相似文献   

6.
J Kucera  J M Walro 《Histochemistry》1989,92(4):291-299
The expression of four myosin heavy chain (MHC) isoforms, avian slow-tonic (ATO) or neonatal-twitch (ANT) and mammalian slow-twitch (MST) or fast-twitch (MFT) in intrafusal fibers was examined by immunocytochemistry of spindles in the tenuissimus muscle of adult cats. The predominant MHCs expressed by nuclear bag fibers were ATO and MST, whereas the MHCs prevalent in nuclear chain fibers were ANT and MFT. The expression of these isoforms of MHC was not uniform along the length of intrafusal fibers. In general, both bag and chain fibers expressed avian MHC in the intracapsular region and mammalian MHC in the extracapsular region. The nonuniform expression of MHCs observed along the length of bag and chain fibers implies that different genes are activated in myonuclei located in the intracapsular and extracapsular regions of the same muscle fiber. Regional differences in gene activation might result from a greater effect of afferents on myonuclei located near the equator of intrafusal fibers then on myonuclei outside the spindle capsule.  相似文献   

7.
The time required for a mechanical impulse to propagate from one end to the other was measured directly in frog sartorius muscles and in fiber bundles from the semitendinosus muscle. When the fibers were fully activated, the transmission velocity was 170 mm/ms. In resting fibers the transmission time was three to four times greater than in activated fibers. Control experiments indicated that the transmission time across the tendons was negligible. A muscle compliance of 55–80 Å per half sarcomere was estimated from these data. The "measurement time" of the method was calculated to be about 15 µs. This relatively short measurement time makes the method potentially useful for detecting changes in cross-bridge compliance.  相似文献   

8.
Investigations of the structure and function of the flexor carpi radialis muscle (FCR) in the cat have led to the hypothesis that the compartmentalized (nonuniform) distribution of fiber types within the muscle relate to the complex motor skills of the cat. To test this hypothesis a study was undertaken to compare the FCR in four mammalian species of similar body size but with different forelimb motor tasks. The species chosen were: dog, opossum, armadillo, and cat. Comparisons were made among species with regard to general muscle morphology, fiber types and sizes, fiber proportions, and fiber distriburtions. The FCR of all species was morphologically similar and contained three muscle fiber types (SO, FOG, and FG). The mean area of muscle fibers was largest in opossum, while the FCR fibers of dogs were smallest. The percentage of SO fibers in the dog FCR was greater than in the other species studied. The opossum FCR also contained a high percentage of SO fibers. The armadillo FCR consisted of a high percentage of FG fibers. In the cat FCR the percentages of all three fiber types were similar. For each species, individual fiber proportions were in agreement with the results for fiber percentages. Compartmentalized distribution of fiber types existed in each species with the dog having the most compartmentalized fiber type distribution and the cat the least compartmentalized distribution. Therefore it seems that the compartmentalized organization of the FCR is not related to any specialized motor task, but may be a generalized pattern associated with motor patterns shared among all species studied.  相似文献   

9.
It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from SO fibers will be affected by length changes of its two-joint synergists. Ankle plantar flexor moment on excitation of the SO was measured for various knee angles (70-140 degrees ). This involved substantial length changes of gastrocnemius and plantaris muscles. Ankle angle was kept constant (80 degrees -90 degrees ). However, SO ankle moment was not significantly affected by changes in knee angle; neither were half-relaxation time and the maximal rate of relaxation (P > 0.05). Following tenotomy, SO ankle moment decreased substantially (55 +/- 16%) but did not reach zero, indicating force transmission via connective tissues to the Achilles tendon (i.e., epimuscular myofascial force transmission). During contraction SO muscle shortened to a much greater extent than in the intact case (16.0 +/- 0.6 vs. 1.0 +/- 0.1 mm), which resulted in a major position shift relative to its synergists. If the SO was moved back to its position corresponding to the intact condition, SO ankle moment approached zero, and most muscle force was exerted at the distal SO tendon. Our results also suggested that in vivo the lumped intact tissues linking SO to its synergists are slack or are operating on the toe region of the stress-strain curve. Thus, within the experimental conditions of the present study, the intact cat soleus muscle appears to act mechanically as an independent actuator.  相似文献   

10.
The objective of this work was to develop a noninvasive method to measure the joint torques produced by biarticular muscles at two joints simultaneously. During intramuscular stimulation of the cat medial gastrocnemius (MG) muscle, torques at the ankle and knee joints were calculated from forces measured in two dimensions at the end point of the cat paw under isometric conditions. The method was verified by the known anatomical properties of cat MG muscle and the tibialis anterior (TA) muscle. The MG muscle was shown to produce a significant flexion torque at the knee, besides an extension torque at the ankle. This was in agreement with its anatomical arrangement. The TA muscle produced primarily an ankle flexion torque. The small knee torque, due to measurement errors, yielded an estimate of measurement accuracy of 3.0 +/- 2.1% (n = 52). The coupling ratio of the MG muscle, defined as T(ankle)/T(knee), varied significantly with both knee and ankle angles. The profile of MG mechanical coupling agreed qualitatively with changes in limb configuration. The method can be used to measure recruitment properties of electrically stimulated biarticular muscles, and may potentially be used to study the biomechanics of biarticular coupling.  相似文献   

11.
The present investigation of fiber arrangement in the collateral ligaments of the knee was carried out in cats and man in various positions of flexion and extension, without compression load. In all knee joint positions, the fibers of the collateral ligaments are twisted except for the fibers in the meniscal part of the medial collateral ligament which have a parallel arrangement. Furthermore, most of the fibers in the collateral ligaments are taut in all positions of the knee joint in both cat and man. By means of planar models representing different fiber arrangements, the kinematic behavior of the collateral ligaments was analyzed. It appears that a crossed (twisted) arrangement of the fibers is most effective in rotatory movements, whereas a parallel orientation is most effective in translation. Our data further indicate that, in measuring the changes in lengths of ligaments during joint motion, one cannot neglect the internal arrangement of fibers and the geometry of the articular surfaces and menisci.  相似文献   

12.
The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in control rats. Immunohistochemical changes in the MG were minimal. These data suggest that the magnitude and direction of enzymatic activity and cell volume changes are dependent on the muscle, the region of the muscle, and the type of myosin expressed in the fibers. Further, the ability of fibers to maintain normal or even elevated activities per unit volume of some metabolic enzymes is remarkable considering the marked and rapid decrease in fiber volume.  相似文献   

13.
Histochemical fiber typing and staining intensity in cat and rat muscles.   总被引:2,自引:0,他引:2  
In the gastrocnemius muscle of cat and rat, staining for oxidative enzymes differentiated three fiber types (A,B,C) and staining for adenosine triphosphate at pH 9.4 differentiated two fiber types (I, II) with a reliability of 90% and 98%, respectively. In cat 96% and in rat 90% of the fibers were typed identically after staining for nicotinamide adenine dinucleotidelinked lactic dehydrogenase (LDH) and succinic dehydrogenase (SDH). When differentiated by staining for LDH, A and B fibers were of type I. IN RAT, 80-90% OF ALL FIBERS WERE OF TYPE 22, COMPPRISING A, B and C fibers. Type I fibers stained for LDH intensely as did C fibers of type II, but stained intermediately for SDH. The degree of staining was measured by photometry. When fibers were stained for LDH, histograms of density showed three peaks corresponding to A, B and C fibers in cat, but only two peaks corresponding to A and C fibers in rat, In cat and rat, the densities of A, B and C fibers belonged to different populations. In soleus muscle of cat and rat stained for LDH, menadione-linked alpha-glycerophosphate dehydrogenase and adenosine triphosphatase at pH 9.4, the degree of staining differed from thatin any type of fiber in gastrocnemius muscle  相似文献   

14.
The present report deals with the functional properties (contraction parameters and neuromuscular transmission) of muscle grafts and transposed muscles substituted for the levator ani muscle in the rat. The experiments were divided into four main groups. Group I - the levator ani [LA] was excised and replaced in its own bed. Group II - the extensor digitorum longus, a fast muscle (with or without predenervation), and Group III - the soleus, a slow twitch muscle, were substituted for the LA. In group IV, the gracilis anterior muscle was either freely grafted in place of the LA or transposed a) with intact innervation, b) with its vascular supply intact or c) with preserved neuro-vascular supply. The optimum results of twitch and tetanic tension, and the amplitude of stimulation EMG responses was found in the case of LA resutured into its own bed and in the case transposition of the gracilis anterior muscle had been performed with its neuro-vascular supply intact in place of the LA. On the basis of these functional findings and morphological and anatomical observations (Grim et al. 1982), a surgical procedure is suggested for patients with anal incontinence (Grim et al. 1981, Dittertová-Vlasáková et al. 1982).  相似文献   

15.
Polymorphism of myosin among skeletal muscle fiber types   总被引:2,自引:1,他引:1       下载免费PDF全文
An immunocytochemical approach was used to localize myosin with respect to individual fibers in rat skeletal muscle. Transverse cryostat sections of rat diaphragm, a fast-twitch muscle, were exposed to fluorescein-labeled immunoglobulin against purified chicken pectoralis myosin. Fluorescence microscopy revealed a differential response among fiber types, identified on the basis of mitochondrial content. All white and intermediate fiber but only about half of the red fiber reacted with his antimyosin. In addition, an alkali-stable ATPase had the same pattern of distribution among fibers, which is consistent with the existence of two categories of red fibers. The positive response of certain red fibers indicates either that their myosin has antigenic determinants in common with "white" myosin, or that the immunogen contained a "red" myosin. Myosin, extracted from a small region of the pectorlis which consists entirely of white fibers, was used to prepare an immunoadsorbent column to isolate antibodies specific for white myosin. This purified anti-white myosin reacted with the same fibers of the rat diaphragm that had reacted with the white, intermediate, and some red fibers are sufficiently homologous to share antigenic determinants. In a slow-twitch muscle, the soleus, only a minority of the fiber reacted with antipectoralis myosin. The majority failed to respond; hence, they are not equivalent to intermediate fibers of the diaphragm; despite their intermediate mitochondrial content. Immunocytochemical analysis of two different musles of the rat has demonstrated that more than one isoenzyme of myosin can exist in a single muscle, and that individual fiber types can be recognized by immunological differences in their myosin. We conclude that, in the rat diaphragm, there are at least two immunochemically distinct types of myosin and four types of muscle fibers: white, intermediate, and two red. We suggest that these fibers correspond to the four types of motor units described by Burke et al. (Burke, R. E., D. N. Levine, P. Tsairis, and F. E. Zajac, III 1973. J. Physiol. (Lond) 234:723-748.)in the cat gastrocnemius.`  相似文献   

16.
Force, velocity, and displacement properties of a muscle are determined in large part by its architectural design. The relative effect of muscle architecture on these physiological variables was studied by determining muscle weight, fiber length, average sarcomere length, and approximate angle of pinnation for 24 cat hind limb muscles. Muscle lengths ranged from 28.3 to 144 mm, whereas fiber lengths ranged from 8.4 to 105.5 mm. Generally, fiber to muscle length ratios were similar throughout a muscle. Estimated angles of pinnation of muscle fibers varied from 0 to 21° with most having an angle of less than 10°. The cross-sectional area of the knee extensors was similar to the knee flexors (16.43 vs. 16.83 cm2) whereas the cross-sectional area of the ankle extensors was more than six times greater than the ankle flexors (18.59 vs. 2.83 cm2). There was a 6.7-fold difference in the maximal force between muscles, when normalized to a constant weight, that could be attributed to architectural features. Rations of wet weight to predicted maximal tetanic tension for each muscle and group were calculated to compare the relative priority of muscle force versus muscle length-velocity for a given mass of muscle. These ratios varied from 0.4 to 4.84. The ratios suggest that velocity and/or displacement is a priority for the hamstrings, whereas force is a priority for the quadriceps and lower leg muscles. As much as a 12.6-fold difference in maximal velocity between muscles can be attributed to differences in fiber lengths. This can be compared to approximately a 2.5-fold difference in maximal velocity reported to occur as a result of biochemical (intrinsic) differences.  相似文献   

17.
The importance of the extracellular matrix (ECM) in muscle is widely recognized, since ECM plays a central role in proper muscle development (Buck and Horwitz, 1987), tissue structural support (Purslow, 2002), and transmission of mechanical signals between fibers and tendon (Huijing, 1999). Since substrate biomechanical properties have been shown to be critical in the biology of tissue development and remodeling (Engler et al., 2006; Gilbert et al., 2010), it is likely that mechanics are critical for ECM to perform its function. Unfortunately, there are almost no data available regarding skeletal muscle ECM viscoelastic properties. This is primarily due to the impossibility of isolating and testing muscle ECM. Therefore, this note presents a new method to quantify viscoelastic ECM modulus by combining tests of single muscle fibers and fiber bundles. Our results demonstrate that ECM is a highly nonlinearly elastic material, while muscle fibers are linearly elastic.  相似文献   

18.
Here we present evidence that strongly suggests that the well-documented phenomenon of A-band shortening in Limulus telson muscle is activation dependent and reflects fragmentation of thick filaments at their ends. Calcium activation of detergent-skinned fiber bundles of Limulus telson muscle results in large decreases in A-band (from 5.1 to 3.3 microns) and thick filament (from 4.1 to 3.3 microns) lengths and the release of filament end fragments. In activated fibers, maintained stretched beyond overlap of thick and thin filaments, these end fragments are translocated to varying depths within the I-bands. Here they are closely associated with fine filamentous structures that also span the gap between A- and I-bands and attach to the distal one-third of the thick filaments. End-fragments are rarely, if ever, present in similarly stretched and skinned, but unstimulated fibers, although fine "gap filaments" persist. Negatively stained thick filaments, separated from skinned, calcium-activated, fiber bundles, allowed to shorten freely, are significantly shorter than those obtained from unstimulated fibers, but are identical to the latter with respect to both the surface helical array of myosin heads and diameters. Many end-fragments are present on grids containing thick filaments from activated fibers; few, if any, on those from unstimulated fibers. SDS-PAGE shows no evidence of proteolysis due to activation and demonstrates the presence of polypeptides with very high molecular weights in the preparations. We suggest that thick filament shortening is a direct result of activation in Limulus telson muscle and that it occurs largely by breakage within a defined distal region of each polar half of the filament. It is possible that at least some of the fine "gap filaments" are composed of a titin-like protein. They may move the activation-produced, fragmented ends of thick filaments to which they attach, into the I-bands by elastic recoil, in highly stretched fibers.  相似文献   

19.
Do muscle fiber properties commonly associated with fiber types in adult animals and the population distribution of these properties require normal activation patterns to develop? To address this issue, the activity of an oxidative [succinic dehydrogenase (SDH)] and a glycolytic [alpha-glycerophosphate dehydrogenase (GPD)] marker enzyme, the characteristics of myosin adenosinetriphosphatase (myosin ATPase, alkaline preincubation), and the cross-sectional area of single fibers were studied. The soleus and medial gastrocnemius of normal adult cats were compared with cats that 6 mo earlier had been spinally transected at T12-T13 at 2 wk of age. In control cats, SDH activity was higher in dark than light ATPase fibers in the soleus and higher in light than dark ATPase fibers in the medial gastrocnemius. After transection, SDH activity was similar to control in both muscles. GPD activity appeared to be elevated in some fibers in each fiber type in both muscles after transection. The cross-sectional areas most affected by spinal transection were light ATPase fibers of the soleus and dark ATPase fibers of the medial gastrocnemius, the predominant fiber type in each muscle. These data demonstrate that although the muscle fibers of cats spinalized at 2 wk of age presumably were never exposed to normal levels of activation, the activity of an oxidative marker enzyme was maintained or elevated 6 mo after spinal transection. Furthermore, although the absolute enzyme activities in some fibers were elevated by transection, three functional protein systems commonly associated with fiber types, i.e., hydrolysis of ATP by myosin ATPase and glycolytic (GPD) and oxidative (SHD) metabolism, developed in a coordinated manner typical of normal adult muscles.  相似文献   

20.
Studies on skinned fibers and single motor units have indicated that slow-twitch fibers are stiffer than fast-twitch fibers. This suggests that skeletal muscles with different motor unit compositions may have different short-range stiffness (SRS) properties. Furthermore, the natural recruitment of slow before fast motor units may result in an SRS-force profile that is different from electrical stimulation. However, muscle architecture and the mechanical properties of surrounding tissues also contribute to the net SRS of a muscle, and it remains unclear how these structural features each contribute to the SRS of a muscle. In this study, the SRS-force characteristics of cat medial gastrocnemius muscle were measured during natural activation using the crossed-extension reflex, which activates slow before fast motor units, and during electrical activation, in which all motor units are activated synchronously. Short, rapid, isovelocity stretches were applied using a linear puller to measure SRS across the range of muscle forces. Data were collected from eight animals. Although there was a trend toward greater stiffness during natural activation, this trend was small and not statistically significant across the population of animals tested. A simple model, in which the slow-twitch fibers were assumed to be 30% stiffer than the fast-twitch fibers, was used to simulate the experimental results. Experimental and simulated results show that motor unit composition or firing rate has little effect on the SRS property of the cat MG muscle, suggesting that architectural features may be the primary determinant of SRS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号