首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
cAMP-mediated cell proliferation is a complex process that involves multiple pathways. Using a cAMP-dependent cell system, FRTL-5 thyroid cells, we have previously demonstrated the existence of a precise autocrine loop in the control of cell proliferation that involves the positive effector thyrotropin (TSH) and the general inhibitor somatostatin. In search of the regulatory mechanisms responsible for the TSH and somatostatin control of cell proliferation, we analyzed the cell cycle regulatory proteins and the cellular pathways involved in the action of both signals. The results show that specific inhibition of cAMP-dependent protein kinase (PKA) and phosphatidylinositol (PI) 3-kinase blocks independently TSH-induced FRTL-5 cell proliferation and that somatostatin interferes with both signals. Each pathway activates different proteins required for G(1)/S progression. Thus, PKA is responsible for the TSH-induction of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA levels, RhoA activation, and down-regulation of p27(kip1). These correlated events are necessary for FRTL-5 cell proliferation after TSH stimulation. Moreover, TSH through PKA pathway increases cyclin-dependent kinase 2 levels, whereas PI 3-kinase signaling increases cyclin E levels. Together, both pathways finally converge, increasing the formation and activation of cyclin E x cyclin-dependent kinase 2 complexes and the phosphorylation of the retinoblastoma protein, two important steps in the transition from G(1) to S phase in growth-stimulated cells. Somatostatin exerts its antiproliferative effect inhibiting more upstream the TSH stimulation of PKA and PI 3-kinase, interfering with the TSH-mediated increases of intracellular cAMP levels by inactivation of adenylyl cyclase activity. Together, these results suggest the existence of a PKA-dependent pathway and a new PKA-independent PI 3-kinase pathway in the TSH/cAMP-mediated proliferation of FRTL-5 thyroid cells.  相似文献   

2.
Vascular development is essential for the establishment of the circulatory system during embryonic development and requires the proliferation of endothelial cells. However, the underpinning regulatory mechanisms are not well understood. Here, we report that geranylgeranyl pyrophosphate(GGPP), a metabolite involved in protein geranylgeranylation, plays an indispensable role in embryonic vascular development. GGPP is synthesized by geranylgeranyl pyrophosphate synthase(GGPPS) in the mevalonate pathway. The selective knockout of Ggpps in endothelial cells led to aberrant vascular development and embryonic lethality, resulting from the decreased proliferation and enhanced apoptosis of endothelial cells during vasculogenesis. The defect in protein geranylgeranylation induced by GGPP depletion inhibited the membrane localization of Rho A and enhanced yes-associated protein(YAP) phosphorylation, thereby prohibiting the entry of YAP into the nucleus and the expression of YAP target genes related to cell proliferation and the antiapoptosis process. Moreover, inhibition of the mevalonate pathway by simvastatin induced endothelial cell proliferation defects and apoptosis, which were ameliorated by GGPP. Geranylgeraniol(GGOH), a precursor of GGPP, ameliorated the harmful effects of simvastatin on vascular development of developing fetuses in pregnant mice. These results indicate that GGPP-mediated protein geranylgeranylation is essential for endothelial cell proliferation and the antiapoptosis process during embryonic vascular development.  相似文献   

3.
In absence of thyrotropin (TSH), FRTL-5 rat thyroid cells stop proliferating and lose the functional characteristics of thyroid tissue. FRTL-5 cells regain their differentiated state and their proliferation activity upon addition of TSH. In this study we investigated the synthesis of histone H1 variants and H19(0) in FRTL-5 cells exposed to 10(-8) M TSH, two days after TSH withdrawal. TSH induced the synthesis of some H1 variants and H1. This effect was already evident six hours after TSH addition, thus well before proliferation, DNA or thyroglobulin synthesis was induced. These data indicate that the induction of H1(0) and some H1 variants is an early event after TSH stimulation and may thus be related to the functional differentiation of FRTL-5 cells.  相似文献   

4.
Rat thyroid cells in culture (FRTL-5 strain) require thyrotropic hormone (TSH) for growth. TSH alone in serum free medium is able to induce DNA synthesis of FRTL-5 cells. DNA synthesis occurs 18-20 hours following TSH stimulation of quiescent cells. Here we demonstrate that two sets of genes, related to the entry of cells in the S phase, are induced by TSH: 1) immediate early genes, such as c-jun and a gene coding for a zinc-finger protein Xrox 20/Egr2, both having a pattern of expression similar to the c-fos oncogene; 2) early delayed genes such as ornithine decarboxylase (ODC), 2F-1, a gene that shows a strong similarity in aminoacid sequence to a mitochondrial ADP/ATP carrier, and the asparagine synthetase gene (TS11). Furthermore, an increased expression of the histone H3 gene, a typical marker of S phase, has been observed in TSH-treated FRTL-5 cells.  相似文献   

5.
The present report shows that thyrotropin (TSH) regulates all three steps involved in prostaglandin synthesis in FRTL-5 rat thyroid cells, i.e. arachidonic acid release from membrane phospholipids, cyclooxygenase (prostaglandin H synthase) action, and individual prostaglandin formation; however, its action at specific steps may require the presence of, or can be duplicated by, insulin, insulin-like growth factor-I (IGF-I), and/or a serum factor. Thus, TSH releases free arachidonic acid from rat FRTL-5 thyroid cells whose phospholipid fraction is radiolabeled with [3H]arachidonic acid; this action involves a pertussis toxin-sensitive G protein, is not cAMP mediated, and does not require insulin or 5% serum. To quantitate TSH effects on cyclooxygenase activity and on individual prostaglandin formation, a homogenate system and a rapid reversed-phase high pressure liquid chromatography procedure have been developed to measure cyclooxygenase metabolites. TSH increased cyclooxygenase activity in homogenates only if the cells were also exposed to insulin, IGF-I, and/or 5% calf serum; TSH alone had no apparent effect on the activity. Maximal activation, 4-fold over basal/micrograms of DNA, took 36 h to achieve and reflected, at least in part, an increase in cyclooxygenase gene expression. Like cyclooxygenase activity, induction of prostaglandin E2 production required 2 or more factors, i.e. TSH plus insulin/IGF-I or TSH plus insulin/IGF-I plus serum. Increased production of prostaglandin D2, could, however, be detected if cells were treated with TSH alone and the TSH activity could be duplicated by insulin, IGF-I, or calf serum alone.  相似文献   

6.
FRTL-5 cells possess high affinity low density lipoprotein (LDL) receptors which bind, internalize, and degrade LDL. When FRTL-5 cells are deprived of thyrotropin (TSH) the binding of LDL increases more than 2-fold. Upon addition of TSH, at a concentration of 1 x 10(-10) M or greater, LDL binding decreases rapidly and within 24 h reaches the level which is typical of FRTL-5 cells chronically stimulated by TSH. The data available suggest that TSH-dependent down-regulation of LDL receptor activity is exerted through a reduction of the number of active LDL receptors, with no change in affinity. It is unlikely that the synthesis of LDL receptors is impaired, since LDL receptor messenger RNA is not decreased by TSH. The effect of the hormone on LDL receptor activity can be mimicked by 8-Br-cAMP and is completely abolished by the protein synthesis inhibitor cycloheximide but not by actinomycin D. TSH regulation of LDL receptor activity is lost in v-ras Ki-transformed FRTL-5 cells (Ki Mol) which also have lost TSH dependence for adenylate cyclase activation and growth. However, 8-Br-cAMP decreases LDL binding in Ki Mol FRTL-5 cells. The reduced availability of LDL receptor in TSH-stimulated FRTL-5 cells may be related to the increased membrane fluidity (Beguinot, F., Beguinot, L., Tramontano, D., Duilio, C., Formisano, S., Bifulco, M., Ambesi-Impiombato, F. S., and Aloj, S. M. (1987) J. Biol. Chem. 262, 1575-1582) or may reflect increased degradation of LDL receptors. We propose that a lower cholesterol uptake is needed in an actively proliferating cell population, to increase the production of isoprenoids whether it be for cholesterol biosynthesis or for the synthesis of other compounds requiring isoprenoid precursors.  相似文献   

7.
8.
Although heat shock proteins (HSPs) were discovered as inducible proteins by the physical stress to protect cells, recent evidence has suggested that HSPs are likely involved in cell cycle control under normal conditions without stress. In the present study, we demonstrated that 73hsc (heat shock cognate protein), which belongs to the HSP70 family of molecular chaperones, interacts with P27Kip1, an inhibitor of cyclin-dependent kinase, during G1/S transition. 73hsc was detected in the immunoprecipitates with anti-P27Kip1 antibody and, vice versa, P27Kip1 was present in the immunoprecipitates with anti-73hsc antibody by Western blotting using growth-stimulated rat thyroid FRTL-5 cells. This complex formation of 73hsc and P27Kip1 was cell cycle dependent and its maximum formation was observed at G1/S transition where the level of P27Kip1 dramatically decreased. ATP dissociated this complex formation in a dose-dependent manner. These data indicated that 73hsc might be involved in the cell cycle progression through the regulation of cell cycle regulators such as P27Kip1.  相似文献   

9.
10.
11.
The EGF-like family of proteins, such as epidermal growth factor (EGF), transforming growth factor α (TGFα), amphiregulin (AR), betacellulin (BTC), cripto-1 (CR-1), and heregulin (HRG), plays an important role in the pathogenesis of several human carcinomas as autocrine growth factors. Differentiation and proliferation of rat thyroid cells in culture (FRTL-5 cells) are regulated by thyrotropin (TSH); withdrawal of TSH from culture medium produces growth arrest, whereas its addition to quiescent cells stimulates cell entry into S phase. Instead, transformed thyroid cell lines as FRTL-5H2 cell line, overexpressing erbB-2, Kimol cells, transformed by the wild-type K-ras and A6 clone, transformed by a temperature sensitive K-ras mutant, can grow without addition of TSH to the culture medium. In order to identify whether EGF-like growth factors and corresponding receptors (erbB-2, erbB-3, and erbB-4) could be involved in the autonomous growth of these transformed rat thyroid epithelial cells, Northern blot for mRNA analysis and Western blot for protein expression were performed. In contrast to normal control FRTL-5 cells, both K-ras and erbB-2-transformed cells expressed elevated levels of erbB-2 receptor. Moreover, both K-ras transformed cells, Kimol and A6 cells, but no FRTL-5H2 cells, were found able to express also high levels of erbB-4 receptor and HRG/NDF ligand. Treatment of K-ras transformed thyroid cells with neutralizing antibody against HRG/NDF reduced by 50% cell proliferation. These data indicate that unlike the erbB-2 overexpressing FRTL-5 cells, in K-ras rat thyroid epithelial cells, the growth factor heregulin signals through the heterodimer erbB-2/erbB-4 receptors in an autocrine fashion. J. Cell. Physiol. 176:383–391, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
We have recently reported that skeletal muscle of the ob/ob mouse, an animal model of genetic obesity with extreme insulin resistance, exhibits alterations in the expression of multiple genes. Analysis and cloning of a full-length cDNA of one of the overexpressed mRNAs revealed a 300-amino-acid protein that could be identified as the mouse geranylgeranyl diphosphate synthase (GGPP synthase) based on its homology to proteins cloned from yeast and fungus. GGPP synthase catalyzes the synthesis of all-trans-geranylgeranyl diphosphate (GGPP), an isoprenoid used for protein isoprenylation in animal cells, and is a branch point enzyme in the mevalonic acid pathway. Three mRNAs for GGPP synthase of 4.3, 3.2, and 1.7 kb were detected in Northern blot analysis. Western blot analysis of tissue homogenates using specific antipeptide antibodies revealed a single band of 34.8 kDa. Expression level of this protein in different tissues correlated with expression of the 4.3- and 3.2-kb mRNAs. GGPP synthase mRNA expression was increased 5- to 20-fold in skeletal muscle, liver, and fat of ob/ob mice by Northern blot analysis. Western blot analysis also showed a twofold overexpression of the protein in muscle and fat but not in liver, where the dominant isoform is encoded by the 1.7-kb mRNA. Differentiation of 3T3-L1 fibroblasts into adipocytes induced GGPP synthase expression more than 20-fold. Using the immunoprecipitated protein, we found that mammalian GGPP synthase synthesizes not only GGPP but also its metabolic precursor farnesyl diphosphate. Thus, the expression of GGPP synthase is regulated in multiple tissues in obesity and is induced during adipocyte differentiation. Altered regulation in the synthesis of isoprenoids for protein prenylation in obesity might be a factor determining the ability of the cells to respond to hormonal stimulation requiring both Ras-related small GTPases and trimeric G protein-coupled receptors.  相似文献   

14.
Thyroid cell proliferation is regulated by the concerted action of TSH/cAMP and serum growth factors. The specific contributions of cAMP-dependent vs. -independent signals to cell cycle progression are not well understood. We examined the molecular basis for the synergistic effects of TSH and serum on G1/S phase cell cycle progression in rat thyroid cells. Although strictly required for thyroid cell proliferation, TSH failed to stimulate G1 phase cell cycle progression. Together with serum, TSH increased the number of cycling cells. TSH enhanced the effects of serum on retinoblastoma protein hyperphosphorylation, cyclin-dependent kinase 2 activity, and cyclin A expression. Most notably, TSH and serum elicited strikingly different effects on p27 localization. TSH stimulated the nuclear accumulation of p27, whereas serum induced its nuclear export. Unexpectedly, TSH enhanced the depletion of nuclear p27 in serum-treated cells. Furthermore, only combined treatment with TSH and serum led to rapamycin-sensitive p27 turnover. Together, TSH and serum stimulated p70S6K activity that remained high through S phase. These data suggest that TSH regulates cell cycle progression, in part, by increasing the number of cycling cells through p70S6K-mediated effects on the localization of p27.  相似文献   

15.
We have cloned a new geranylgeranyl pyrophosphate (GGPP) synthase gene, designated GGPS6/, from Arabidopsis thaliana genomic DNA. Nucleotide sequence analysis revealed that the GGPS6 gene contains an open reading frame coding for a protein of 343 amino acid residues with a calculated molecular mass of 37 507 Da. Also, the gene is not interrupted by an intron. The predicted amino acid sequence of the GGPS6 gene shows significant homology (34.0–57.7%) with other GGPP synthases from Arabidopsis. The GGPS6 protein contains a N-terminal signal peptide which is thought to function as an organelle targeting sequence. In fact, the GGPS6-GFP fusion protein was found to be localized exclusively in mitochondria when expressed in tobacco BY-2 cells. In vitro analysis of the enzyme activity as well as genetic complementation analysis with Erwinia uredovora crt gene cluster expressed in Escherichia coli showed that the GGPS6 gene most certainly encodes a GGPP synthase catalyzing the conversion of farnesyl pyrophosphate to GGPP.  相似文献   

16.
17.
18.
19.
20.
A gene encoding a novel geranylgeranyl pyrophosphate (GGPP)synthase from Arabidopsis thaliana has been identified and termedGGPS5. The gene has been sequenced and expressed in Escherichiacoli. The deduced amino acid sequence showed 64.5% and 57.5%identity with a putative GGPP synthase from Arabidopsis andCapsicum annuum, respectively. GGPP enzymatic activity was detectedin E. coli cells expressing the GGPS5 gene in two differentways. One was the direct measurement of GGPP synthase activityin cell extracts and the other was the yellow color productionof cells when the GGPS5 gene was co-expressed with crtB, crtI,crtX, crtY and crtZ genes derived from Erwinia uredovora. (Received May 20, 1996; Accepted December 14, 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号