首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Young inflorescence explants of Setaria italica in culture showed high capacity for regenerating plantlets through somatic embryogenesis. Embryogenic callus formation was initiated from the explants cultured on Murashige and Skoog's medium with 2 mg/l 2,4-D and 0.2–0.5 mg/l KT or BAP, but it was better for the maintenance of embryogenic growth to subculture the calli on the medium with 2,4-D and KT/BAP and on the medium with 2 mg/l 2iPA and 0.2 mg/l NAA alternately. A number of plantlets were regenerated when embryogenic calli were transferred onto the same basic medium but with 2 mg/l BAP and 0.5 mg/l NAA. Plant regeneration capacity has been maintained in some embryogenic calli during fourteen months of subculture.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - IAA 3-indoleacetic acid - 2iPA N6-(2-isopentenyl) adenosine - BAP 6-benzylaminopurine - KT kinetin - CH casein hydrolysate  相似文献   

2.
Embryogenic callus and suspension cultures of eastern white pine (Pinus strobus) have been obtained. The whole female gametophyte was plated on a medium containing 50 mg/l glutamine, 500 mg/l casein hydrolysate, 3% sucrose, 2 mg/1 2,4-D, 1 mg/1 BA and 0.2% Gelrite as a solidifying agent. Embryogenic calli could be seen as early as 5 days following culture. Histological studies indicate proliferation of pre-existing embryogenic tissue in the corrosion cavity followed by extrusion of embryogenic callus through the micropylar end of the gametophyte. Embryogenic suspension cultures were obtained by placing embryogenic callus into liquid medium. Embryogenic suspension cultures were subcultured weekly and proliferated as early-stage embryos with attached suspensors. Embryo development was obtained following transfer of the embryogenic tissue to an auxin-free medium containing 50 mM glutamine, 38 M abscisic acid, and 6% sucrose. Although embryo development could be consistently obtained, whole plants have not yet been recovered from these somatic embryos.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - ABA Abscisic acid - BA 6-Benzyladenine Salaries and research support were provided by State and Federal funds appropriated to OSU/OARDC. Journal Article No. 62–89  相似文献   

3.
Summary Embryogenic masses were obtained from immature leaves of peanut (Arachis hypogaea L.) cultured on a medium containing 20 mg/l 2,4-D. Somatic embryos developed from these masses following transfer to a medium containing 3 mg/l 2,4-D. The embryo morphology was quite variable. Following transfer to hormone-free medium, these embryos germinated. Shoot elongation was obtained in 25% of the embryos following transfer to a medium supplemented with 0.5 mg/l each of BAP and Kn. The plants grown in vitro by this method survived in sand:soil mixture and were grown to maturity.Abbreviations ABA abscisic acid - BAP 6-benzyl amino purine - 2,4-D 2,4 dichlorophenoxyacetic acid - GA3 gibberellic acid - Kn kinetin - NAA 1-naphthaleneacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - Z zeatin  相似文献   

4.
Embryogenic callus was initiated from bamboo (Sinocalumus satiflora (Munro) McClure) anthers cultured on N6 medium supplemented with 1 mg/l 2,4-D, 1 mg/l BA, 2 g/l charcoal, 0.8% agar (Sigma) and 9% sucrose. Anthers with microspores at miduninucleate to early-binucleate stages showed better rate of response for callus induction. Prolonged culture of these embryogenic calli on the original medium or subculture to an auxin-free medium resulted in embryoid formation and their subsequent germination to form rooted plantlets. Chromosome counts from root-tip cells of anther-derived plant indicated that they were haploid (N=36).Abbreviations N6 Chu et al. (1975) - MS Murashige and Skoog (1962) - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - BA 6-benzylaminopurine  相似文献   

5.
Embryogenic callus cultures were obtained upon repeated sub-culture of non-embryogenic callus from nodal segments of Cymbopogon martinii (Roxb.) Wats. Murashige and Skoog's medium supplemented with 1mg/l 2,4-dichlorophenoxyacetic acid and 0.5 mg/l kinetin and Linsmaier and Skoog's medium supplemented with 2mg/l 2,4-dichlorophenoxyacetic acid and 0.4 mg/l kinetin were used as maintenance media for non-embryogenic and embryogenic cultures, respectively. Plant regeneration occurred through organogenesis in MS basal media containing 2 mg/l kinetin, 1 mg/l 6-benzylaminopurine, 0.2 mg/l biotin, 0.2 mg/l Ca-pantothonate and 0.1 mg/l napthalene acetic acid. Embryogenesis was induced in LS medium supplemented with 1 mg/l kinetin, 0.5 mg/l 6-benzylaminopurine and 0.1 mg/l 3-indole acetic acid. Plant regeneration at high frequency was recorded both through organogenesis and embryogenesis in different passages of long term callus cultures.Abbreviation MS Murashige and Skoog medium - LS Linsmair and Skoog medium - BAP 6-benzylaminopurine - kin kinetin - 2,4-D 2,4-Dichlorophenoxyacetic acid - IAA Indole-3-acetic acid - CH Casein hydrolysate - CaP calcium pantothonate - NAA napthalene acetic acid  相似文献   

6.
《Plant science》1987,51(1):93-96
Somatic embryogenesis and subsequent formation of plantlets was achieved from callus cultures derived from mature zygotic embryos of Sinocalamus latiflora (Munro) McClure (Bamboo). Embryogenic callus was initiated on Murashige and Skoog's medium (MS) supplemented with 6 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 3 mg/l kinetin, 250 mg/l polyvinylpyrrolidon and 5% sucrose. Prolonged culture of the embryogenic callus on the same medium resulted in embryoid formation. The embryoids developed further to yield whole plantlets when transferred to a medium containing lower concentrations of 2,4-D (3 mg/l) and kinetin (2 mg/l).  相似文献   

7.
Summary Immature embryos of 41 lines of barley were screened in vitro for callus induction and somatic embryogenesis on different media to establish totipotent cultures. The use of modified MS and CC media, both supplemented with 1 g/l casein hydrolysate, and the substitution of agarose for agar resulted in the highest frequencies of somatic embryo induction. Embryogenic callus was induced and plants regenerated from 23 of the lines tested. The auxins 2,4-D, dicamba, picloram and 2,4,5-T were suitable for embryogenic callus induction. High frequencies of somatic embryo germination occurred on CC medium supplemented with 1 mg/l IAA and 0.05 mg/l zeatin. A strong genotypic effect on the capacity and frequency of embryogenic callus formation was found. Cultivar Golden Promise always gave the best results. Experiments with field grown material in 3 consecutive years showed that environmental factors also strongly influenced the induction of somatic embryogenesis and plant regeneration.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - dicamba 3,6-dichloro-o-anisic acid - picloram 4-amino-3,6,6-trichloropicolinic acid - NAA naphtaleneacetic acid - IAA indole-3-acetic acid - ABA abscisic acid - BAP 6-benzyl amino purine - 2iP 6-(3-methyl-2 butenyl 1-amino)purine - GA3 gibberellic acid  相似文献   

8.
Lee KP  Lee DW 《Plant cell reports》2003,22(2):105-109
Regeneration via somatic embryogenesis from callus was studied in Dicentra spectabilis. To obtain somatic embryogenic callus, we cultured D. spectabilis seeds on MS basal media supplemented with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). The highest percentage of embryogenic callus formation was observed on media containing 1.0 mg/l 2,4-D under dark conditions. Somatic embryogenesis was studied by transferring the callus onto MS basal medium containing different concentrations (0.0, 0.1, 0.5, 1.0, 2.0 mg/l) of KIN (kinetin) and/or BAP. Somatic embryogenesis on MS basal media with 1.0 mg/l of KIN was excellent under light conditions. Somatic embryos were rooted by transferring them to half-strength MS basal media containing 2 g/l Phytagel. About 64.2% of the somatic embryos converted to rooted plantlets, 4% showed secondary embryogenesis and 31.8% did not develop and died. Rooted plantlets showed a 46% survival rate when acclimatized ex vitro.Abbreviations BAP 6-Benzylaminopurine - 2.4-D 2,4-Dichlorophenoxyacetic acid - KIN Kinetin - SEM Scanning electron microscopyCommunicated by H. Lörz  相似文献   

9.
Summary Embryogenic callus was initiated from radicles of mature embryos removed from imbibed seeds (24 h). Embryogenic and other nonembryogenic types of callus proliferated on a modified half-strength Murashige-Skoog medium (MS) basal medium (BM) supplemented withmyo-inositol, casein hydrolysate (CH), L-glutamine (gln) and growth regulators kinetin (KN), N6-benzyladenine (BAP) each (20×10−6 M), 2,4-dichlorophenoxyacetic acid (2,4-D) (50×10−6 M) Embryogenic callus bearing suspensor-like cells in a mucilaginous gel matrix was isolated and maintained by subculture every 10 to 12 days on BM with KN, BAP each (2×10−6 M) and 2,4-D (5×10−6 M). Somatic embryos developed spontaneously from the callus on this medium at 23±1° C. Closer examination revealed that numerous polyembryonic clusters, comprised of elongated cells (suspensors) and small dense cells with large nuclei (somatic embryos), occurred in the viscous gel. When this enriched embryonal-suspensor mass was subcultured to low 2,4-D (1×10−6 M), globular embryos developed by 40 to 60 days. Upon transfer to a liquid medium without growth regulators, the embryos elongated and developed cotyledons and shoots with needles. Plantlet development was completed by 30 days in a basal medium without CH, gln and growth regulators. The total culture time was 150 days. Approximately 40±10 embryos were formed from 500 mg of initial callus. Somatic embryogenesis became aberrant if embryos remained attached to the callus mass and were not subcultured within 10 to 12 days according to the described protocol. Somatic embryos were encapsulated in an alginate gel and stored at 4° C for nearly two months without visible adverse effects on viability. Editor's Statement This paper presents advances in the in vitro regeneration of a commercially useful plant species from stored seeds. In addition, data is presented on short-term storage of the plantlets, and long-term proliferation of the embryonal mass in vitro.  相似文献   

10.
Embryogenic callus and suspension cultures of carrot (Daucus carota L., cv. Nantaise), growing on/in medium including 1 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D), were transferred to medium with or without this plant growth regulator, to impair or induce, respectively, further development of somatic embryos. The endogenous hormone levels of the cultures were determined over 7 days by means of radio-immunoassay, to characterize their evolution in the initial stages of embryo development. In general, levels of indoleacetic acid (IAA) and abscisic acid (ABA) showed only short-lived differences among treatments during this time in both types of tissue analyzed (i.e., a peak of IAA in callus cultures in the absence of 2,4-D, 48 h after medium change, and higher ABA contents 144 h after subculture of suspension cultures in the presence of 2,4-D). Gibberellins (1, 3 and 20) were detected only in suspension cultures devoid of 2,4-D, starting 24 h after subculture. Concerning the evaluated cytokinins—zeatin/zeatin riboside and N6(2-isopentenyl) adenine/N6(2-isopentenyl) adenosine—the most remarkable observation is that high levels of the former generally coincided with low concentrations of the latter, indicating a shift from precursor to the active form, and vice versa.  相似文献   

11.
Summary Young inflorescence explants of green bamboo (Bambusa oldhamii Munro) in culture show a high capacity for plant regeneration through somatic embryogenesis. Embryogenic callus was initiated from explants maintained on Murashige and Skoog's medium supplemented with 3 mg/l 2,4-D, 2 mg/l kinetin and a high content (60 g/l) of sucrose. Prolonged culture in the embryoid induction medium or transferral of embryonic callus to auxin-free medium resulted in the continued development and eventual germination of embryoids and establishment of rooted plantlets that were successfully transferred to soil.  相似文献   

12.
The study was carried out to establish in vitro culture conditions for plant regeneration of tef, Eragrostis tef (Zucc.) Trotter. Mature seeds of two Ethiopian varieties, DZ-01-354 and DZ-01-196, were used to initiate callus cultures on Murashige and Skoog (MS) medium with different auxins. Four- and 8-week-old calli induced on a medium with 2.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) were subcultured onto various media to induce somatic embryogenesis. Compact, nodulated, embryogenic callus was observed after transfer onto MS-callus proliferating (CP) medium. Embryogenic tissue appeared on soft and amorphous callus and developed into somatic embryos during a subsequent subculture to MS embryo-promoting (EP) media. Various growth regulator combinations were tested in CP and EP media to obtain a high efficiency of somatic embryo formation. The highest frequency of calli forming somatic embryos (56.1–68.3%) was observed when CP media with 2.0 or 4.0 mg/l 2,3,5-triiodobenzoic acid were employed and then cultures were transferred to EP media with 0.5 mg/l 2,4-D and 0.5 mg/l kinetin followed by 0.5 mg/l indole-3-acetic acid and 0.5 mg/l N6-benzyladenine. Plant development from somatic embryos was obtained on MS medium supplemented with 1.0 mg/l gibberellic acid. On average, 71.2% of calli displaying somatic embryos converted into plants. Regenerated plants were successfully transferred to soil. Neither chlorophyll-deficient plants nor morphological variants were found among regenerants. All regenerated plants were fertile. Received: 9 May 1997 / Revision received: 25 September 1997 / Accepted: 3 January 1998  相似文献   

13.
Embryogenic callus in Catharanthus roseus was initiated from hypocotyl on Murashige and Skoog’s (MS) medium supplemented with 1.0–2.0 mg dm−3 of 2,4-dichlorophenoxyacetic acid (2,4-D) or chlorophenoxyacetic acid (CPA). Calli from other sources were non-embryogenic. Numerous somatic embryos were induced from primary callus on MS medium suplemented with naphthalene acetic acid (NAA) within two weeks of culture. Embryo proliferation was much faster on medium supplemented with 6-benzylaminopurine (BAP). After transfer to medium with gibberellic acid (GA3, 1.0 mg dm− 3) mature green embryos were developed and germinated well into plantlets on MS liquid medium supplemented with 0.5 mg dm−3 BAP. Later, embryos with cotyledonary leaves were subjected to different auxins treatments for the development of roots. Before transfer ex vitro, plantlets were cultivated on half strength MS medium containing 3 % sucrose and 0.5 mg dm−3 BAP for additional 2 weeks. Additionally, the effect of liquid medium has been evaluated at different morphogenetic stages.  相似文献   

14.
Embryogenic and non-embryogenic calluses were induced from 3,4,5 and 7d old coleoptile segments of indica rice (Oryza sativa L. cv. CH 1039). Compact, globular, yellow and creamy embryogenic and white friable non-embryogenic callus arose from the cut end and entire length of the coleoptile segments. Murashige and Skoog's (MS) medium supplemented with 2.5mg/1 2,4-D was used as callus induction medium. Plant regeneration from coleoptile segments occurred with the transfer of embryogenic callus to MS basal medium supplemented with 2.0mg/1 BAP and 0.5mg/1 NAA in combination. Average number of regenerated plants from one coleoptile ranged from9.1 to 14.0.Four day old coleoptiles showed the highest frequency of plant regeneration.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - MS Murashige and Skoog (1962) - NAA 1-naphthalene acetic acid  相似文献   

15.
Plant regeneration through somatic embryogenesis of Areca catechu L. was established using leaf, root and stem segments as explants. Embryogenic callus was induced and maintained on medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or 3,6-dichloro-2-methoxybenzoic acid (dicamba) at concentrations 2, 4, 6 and 8 mg dm−3 in darkness. Somatic embryos were found on primary callus in the presence of 2 and 4 mg dm−3 dicamba and during subculture on 2 – 8 mg dm−3 2,4-D or 2 – 4 mg dm−3 dicamba-containing media. Plantlet conversion from embryos was successfully achieved on growth regulator-free medium. The plants grew well when transplanted to containers in shaded greenhouse.  相似文献   

16.
Fast growing calli induced from hypocotyl segments ofGentiana crassicaulis were used for preparation of protoplasts. High yields of viable protoplasts were produced in an enzyme solution containing 1–2% cellulase, I% pecfinase, and 0.5% Hemicellulase. Protoplasts were cultured in KM8P medium containing 1 mg/l 2,4-D, 0.5 mg/l 6BA, 500 mg/l LH, 0.5 M glucose and 0.1 M mannitol by the solid-liquid dual layer culture method. First division occurred within 4–5 days of culture at a frequency of 17.8%. Sustained divisions led to callus formation. Periodically diluting the cultures with freshly prepared liquid medium containing 1% glucose was critical for colony formation. Protocolonies about 2 mm in size were transferred onto MS medium supplemented with 3 mg/l ZT, 2 mg/l 6BA, 1 mg/l GA3, 1 mg/l NAA and 6% sucrose to obtain embryogenic calli. Plantlets were regenerated via somatic embryogenesis at high frequency on hormone-free MS Medium.Abbreviations 6BA 6-benzylaminopurine - NAA naphthaleneacetic acid - 2,4-D 2,4 - dichlorophenoxyacetic acid - ZT zeatin - GA3 gibberellic acid - LH lactalbumin hydrolysate - MES 2-(N-morpholino)-ethane sulfonic acid - MS Murashige & Skoog's medium(1962)  相似文献   

17.
Summary Shoot regeneration was achieved from leaf derived callus of Dianthus chinensis using Phenylacetic acid (PAA). Callus from basal leaf segments, raised on Murashige and Skoog's (MS) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) or 1-Naphthaleneacetic acid (NAA) in combination with 6-benzylamino purine (BAP), was subcultured on medium supplemented with BAP in combination with 2,4-D, NAA or PAA. Shoots were induced only when leaf derived callus was subcultured on medium containing BAP (2.0, 5.0 mg/l) in combination with PAA (0.5, 1.0 mg/l). No shoot regeneration was observed when 2,4-D, NAA or BAP were used in the medium either singly or in different combinations. These results demonstrate that PAA in combination with BAP was essential to trigger shoot regeneration from cultured leaf callus of D. chinensis.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - DPX dibutylphthalate xylol - MS Murashige and Skoog (1962) basal medium - NAA 1-Naphthaleneacetic acid - PAA Phenylacetic acid  相似文献   

18.
Summary Embryogenic callus induced from mature caryopses of perennial ryegrass (Lolium perenne L.) were placed in liquid half-strength Murashige and Skoog (MS) basal medium and supplemented with 6.0 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D), 3 g/l (w/v) casein hydrolysate (CH), and B5 vitamins, to initiate fast-growing highly embryogenic cell suspension cultures. Newly initiated suspension cultures contained a high level of large non-embryogenic cells (NE) with relatively few embryogenic (E) cells. Cell types were separated by discontinuous Percolls gradients or by filtering the newly initiated cultures through 31-μm nylon mesh. The growth conditions of the E cell were optimized by testing various media components including 2,4-D and sucrose, and subculture diluton ratio. Optimal shoot formation occurred after pretreatment of the embryogenic cells on solidified callus maintenance medium supplemented with 60 mg/l cefotaxime for 4 weeks prior to transfer to regeneration medium Regeneration media consisted of half-strength MS basal medium supplemented with B5 vitamins, 0.5 mg/l fluridone, and 0.5 mg/l BA. Most plants regenerated were albino with only a few green plants. Journal Paper number MAES 2959 of the Massachusetts Agricultural Experiment Station.  相似文献   

19.
Plantlets were regenerated from cultured seed explants of the forage grass Caucasian bluestem [Bothriochloa caucasica (Trin.) C.E. Hubbard] via somatic embryogenesis. Embryogenic callus was produced in four weeks when surface sterilized seeds were cultured on a medium containing MS-salts, B-5 vitamins, 12 mM L-proline, 2% sucrose, 0.8% agar and 5M 2,4-D. Plantlets were regenerated in 6–8 weeks after culture initiation. Healthy root and shoot systems were produced within three weeks after the plantlets were transferred to a medium lacking 2,4-D. Approximately 95% of the plantlets survived greenhouse acclimation and produced healthy plants and viable seeds. Caucasian bluestem callus cultures exhibit natural resistance to kanamycin. High levels of kanamycin (up to 800 mg/l) did not completely inhibit callus growth. However, the regeneration of healthy-plantlets was completely inhibited by kanamycin even at low levels (50 mg/l).  相似文献   

20.
Efficient plant regeneration through somatic embryogenesis was achieved in Polyscias filicifolia. Embryogenic calluses were induced on Murashige and Skoog (MS) basal medium supplemented with 0.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 benzylaminopurine (BAP; type I callus) and on MS medium with 2.0 mg l−1 2,4-D and 0.01 mg l−1 kinetin (type II callus) from leaf explants of a 2-yr-old plant. Primary somatic embryos (PSEs) developed after four passages of suspension culture established from embryogenic callus when cultured in liquid half-strength MS medium (1/2 MS) without growth regulators. PSEs in the cotyledonary stage were multiplied by adventitious embryogenesis. Single secondary somatic embryos (SSEs) or their clusters developed at the base of PSE hypocotyls and regenerated into plantlets in a one-step process on plant growth regulator-free 1/2 MS medium. Low sucrose concentration of 15 g l−1 promoted development of normal SSEs. All SSEs regenerated into single, well-rooted plantlets on a Nitsch and Nitsch medium supplemented with 0.5 mg l−1 kinetin, 0.1 mg l−1 indole-3-butyric acid, and 10 mg l−1 adenine sulfate. Subsequent two subculture cycles on the same medium were necessary to obtain plantlets sufficiency developed to allow successful transfer to the soil. Rooted plantlets were established in a peat mixture with 90% survival, with the plants showing normal morphological characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号