首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have obtained deuterium (2H) Fourier transform nuclear magnetic resonance (NMR) spectra of zwitterionic L-[beta-2H3]alanine, DL-[gamma-2H6]valine, DL-[beta, gamma-2H4]threonine, L-[delta-2H3]leucine, and L-[alpha, beta, gamma, gamma', delta-2H10]isoleucine in the crystalline solid state and have determined the deuteriomethyl group spin-lattice relaxation rates as a function of temperature. The results yield the Arrhenius activation energies (delta E) for methyl rotation, and through use of a suitable mathematical model, rotational correlation times, tau c. For alanine, valine, threonine, leucine, and isoleucine at 37 degrees C, tau c and delta E values are 780, 100, 40, 38, and 18 ps and 22, 14.0, 17.6, 15.5, and 8.6 kJ, respectively. For L-[beta-2H3]alanine in the zwitterionic lattice, a spin-lattice relaxation time (T1) minimum of 2.1 +/- 0.3 ms is observed (at 0 degree C), in excellent agreement with the 1.92-ms prediction of the mathematical model. Similar tau c and delta E measurements are reported for bacteriorhodopsin in the purple membrane of Halobacterium halobium R1 and for Escherichia coli cell membranes. Overall, our results demonstrate a great similarity between the dynamics in amino acid crystals and in membrane proteins. However, threonine exhibits a nonlinear Arrhenius behavior in bacteriorhodopsin, and in the valine-, leucine-, and isoleucine-labeled membrane samples at higher temperatures (approximately greater than 37 degrees C), there is evidence of an additional slow side-chain motion. The lipid phase state in E. coli does not appear to influence, on the average, the dynamics of the valine side chains. These results indicate that the sensitivity of the deuterium NMR technique is now adequate to study in moderate detail the dynamics of most types of amino acids in a membrane protein and that adequate sensitivity, in some instances, should be available for the study of individual amino acids in suitably labeled membrane proteins.  相似文献   

3.
4.
The active sites of enzymes can be studied in great detail using nuclear magnetic resonance spectroscopy. The determination of pKa values of active site histidine residues in bovine pancreatic ribonuclease and the characterization of the binding of peptide hormones to carrier proteins are two such examples. The study of the active site of staphylococcal nuclease is another example and is presented in detail in this paper. The structure of 3'5'-thymidine diphosphate bound in the active site of staphylococcal nuclease has been studied by measuring the relaxation rate enhancement of substrate analog nuclei by a paramagnetic metal ion. The lanthanide ion, Gd(III), was substituted for Ca(II) in the formation of the ternary complex of nuclease: Gd(III) : 3'5'-thymidine diphosphate. Measurements were made of the transverse relaxation rates of protons and the longitudinal and transverse relaxation rates of the phosphorus nuclei of bound nucleotide. Internuclear distances between the metal ion and atoms of the 3'5'-thymidine diphosphate nucleotide were determined from these data by using the Solomon-Bloembergen equation. In general, these distances corresponded closely to those determined by previous X-ray crystallography of the thymidine diphosphate complex. These internuclear distances were also used with a computer program and graphics display to solve for metal : nucleotide geometries which were consistent with the experimental data. A geometry similar to the structure of the metal : nucleotide complex bound to nuclease determined by X-ray analysis was one of the solutions to this computer modeling process. For staphylococcal nuclease the NMR and X-ray methods yield compatible high resolution information about the structure of the active site.  相似文献   

5.
J B Wooten  J S Cohen 《Biochemistry》1979,18(19):4188-4191
Hen egg white lysozyme has been prepared in which the C epsilon position of the single histidine residue is substituted by a deuterium atom as a nondisturbing stable isotope probe. The deuterium nuclear magnetic resonance (2H NMR) spectrum in H2O shows a broad resonance (500--1000 Hz) due to the histidine deuteron and a sharp signal from residual HOD. The line width of the deuterium signal increases with pH, reflecting the self-association of lysozyme which is known to involve this histidine [shindo, H., Cohen, J.S., & Rupley, J. A. (1977) Biochemistry 16, 3879]. Correlation times calculated from spin-spin relaxation times (T2) derived from the 2H widths indicate that His-15 is restricted in motion and that lysozyme is predominantly dimerized at pH 7.5. Controls carried out with [epsilon-2H]imidazole showed a small pH dependence of the spin-lattice relaxation time (T1), which parallels the 2H chemical shift change upon ionization of the imidazole. Similar results cannot generally be observed by proton nuclear magnetic resonance (1H NMR) because of paramagnetic relaxation due to trace metal ion impurities. The pH dependence of the 2H T1 values indicates a change in the 2H quadrupole coupling constant upon protonation of the imidazole ring.  相似文献   

6.
Nuclear magnetic resonance (NMR) spectroscopy has evolved over the last decade into a powerful method for determining three-dimensional structures of biological macromolecules in solution. Key advances have been the introduction of two-dimensional experiments, high-field superconducting magnets, and computational procedures for converting the NMR-derived interproton distances and torsion angles into three-dimensional structures. This article outlines the methodology employed, describes the major NMR experiments necessary for the spectral analysis of macromolecules, and discusses the computational approaches employed to date. The present state of the art is illustrated using a variety of examples, and future developments are indicated.  相似文献   

7.
8.
9.
Oxygen-17 and deuterium NMR studies of lysozyme hydration are reported for a wide range of lysozyme concentrations, and the relationship between water "activity" and water mobility in the lysozyme-water system as determined by high-field NMR is examined. In a first approximation, the effect of lysozyme activity on hydration is considered to be small because of the relatively low charge on lysozyme at pH 7 and the absence of salt in the lysozyme solutions. Correlation times are determined for tightly bound water, weakly bound water, and "multilayer" or trapped water in lysozyme at 20 degrees C. Hydration numbers are also determined for these three different water populations interacting with lysozyme. Good agreement is found between the hydration numbers determined by 17O NMR and the calculations based on the D'Arcy and Watt analysis of water sorption isotherms for proteins that considered three major water populations in hydrated lysozyme. A molecular interpretation for the three components in the D'Arcy and Watt theory of sorption isotherms is also proposed on the basis of our NMR results. Previous proton NMR spin-echo results are shown to be consistent with our findings by 17O NMR and support the view that there are at least four regions of distinct hydration behavior of lysozyme which span the whole range from solutions to solid powders.  相似文献   

10.
The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.  相似文献   

11.
The flexibility of individual amino acid side chains of pancreatic phospholipase A2 in aqueous and micellar solutions was studied with deuterium nuclear magnetic resonance (2H NMR). Bovine pancreatic phospholipase A2 was selectively deuterated at the aromatic ring systems of Trp-3 and Phe-5 and porcine pancreatic phospholipase A2 at Trp-3 only. Solid-state 2H NMR spectra of the lyophilized enzymes exhibited quadrupole splittings on the order of 130 kHz, indicating almost complete immobilization of the aromatic ring systems. Exposure to a water-saturated atmosphere did not remove these steric constraints. However, side-chain mobility could be induced for the tryptophyl residue of the bovine enzyme by dissolving this enzyme in aqueous buffer or micellar solution whereas the phenyl ring always remained immobile and served as a probe for the protein's overall rotation. Typical correlation times for the tryptophyl and phenyl aromatic ring systems in aqueous solution were 7 ps and 13 ns (at 20 degrees C), respectively. The correlation time of the phenyl ring was longer than expected for the monomeric protein (approximately 6 ns), suggesting some aggregation of the protein at the high concentrations used for the NMR measurements. Addition of a micellar solution of oleoylphosphocholine had no influence on the motional freedom of the tryptophyl residue but approximately doubled the correlation time of the phenyl ring, indicating an increase of the effective volume of the tumbling particle due to lipid-protein interaction. A different behavior was observed for the Trp-3 residue of porcine phospholipase A2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
J Seelig  H Gally 《Biochemistry》1976,15(24):5199-5204
The motion of the ethanolamine head group in unsonicated lipid bilayers above and below the phase transition is studied by means of deuterium and phosphorus magnetic resonance. For this purpose, dipalmitoyl-3-sn-phosphatidylethanolamine is selectively deuterated at the two ethanolamine carbon atoms. The deuterium quadrupole splittings of the corresponding bilayer phases are measured at pH 5.5 as a function of temperature. In addition, the phosphorus-31 chemical shift anisotropies of planor-oriented and randomly dispersed samples of dipalmitoyl-3-sn-phosphatidylethanolamine are measured at pH 5.5 and 11 by applying a proton-decoupling field. The knowledge of the static chemical shift tensor (Kohler, S.J., and Klein, M.P. (1976), Biochemistry 15, 967) provides the basis for a quantitive analysis of the head-group motion. The nuclear magnetic resonance data are consistent with a model in which the ethanolamine group is rotating flat on the surface of the bilayer with rapid transitions occurring between two enantiomeric conformations.  相似文献   

15.
R Skarjune  E Oldfield 《Biochemistry》1979,18(26):5903-5909
Phospholipid head group conformations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), DPPC-cholesterol, and DPPE-cholesterol dispersions, in excess water above the pure lipid gel to liquid-crystal phase transition temperature, have been calculated by using comparisons between experimental 2H and 31 P NMR spectral parameters and theoretical results obtained from a plausible model of head group motions. The new calculations are compared with results obtained in previous studies [Seelig, J., Gally, H. U., & Wohlgemuth, R. (1977) Biochem, Biophys. Acta 467, 109--117; Brown, M. F. & Seelig, J. (1978) Biochemistry 17, 381--384; Seelig, J., & Gally, H. U. (1976) Biochemistry 15, 5199--5204] and are shown to agree qualitatively under certain highly restrictive conditions. Under more general conditions, it is shown that many possible solutions are generated but that these may often be separated into a small number of likely conformations in which the head group torsion angles are restricted to specific ranges rather than to a discrete set of values. There is no NMR evidence, however, to support the notion that there are only single conformational solutions to the NMR measurements for the above phospholipid systems.  相似文献   

16.
17.
18.
We have obtained deuterium (2H) nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times (T1) of L-[epsilon-2H3]methionine, L-[epsilon-2H3]methionine in a D,L lattice, and [S-methyl-2H3]methionine in the crystalline solid state, as a function of temperature, in addition to obtaining 2H T1 and line-width results as a function of temperature on [epsilon-2H3]methionine-labeled sperm whale (Physeter catodon) myoglobins by using the method of magnetic ordering [Rothgeb, T. M., & Oldfield, E. (1981) J. Biol. Chem. 256, 1432-1446]. The results indicate that in the L-amino acid, methyl rotation having an activation energy (delta E) of 8.3 +/- 1 kJ dominates T1 at low temperatures (less than or equal to 10 degrees C), while at higher temperatures an additional large-amplitude side-chain motion occurs which causes changes in the 2H NMR line shape and T1. This motion is inhibited in the D,L lattice, indicating that lattice effects may have a strong effect on the mobility of anhydrous amino acids in the solid state. Further substitution at S delta to form the sulfonium salt [S-methyl-2H3]-methionine causes a large increase in delta E, to 15.9 +/- 2 kJ, a value comparable to the 14-16 kJ found in valine and leucine, which contain the structurally similar isopropyl moiety. These results suggest that the very low barriers to methyl rotation in the methionine side chain are due to long C-S bond lengths and the presence of only two substituents on sulfur, while the anomalous high-temperature behavior is due to a lattice-packing effect. 2H T1 results with methionine-labeled myoglobin are complex, reflecting the presence of fast large-amplitude side-chain motions, in addition to rapid methyl rotation. Our data indicate that Met-55 and Met-131 are motionally inequivalent in crystalline cyanoferrimyoglobin, in contrast to solution NMR results. We have also recorded 13C cross-polarization "magic-angle" sample-spinning NMR spectra of [epsilon-13C]methionine-labeled crystalline cyanoferrimyoglobin (at 37.7 MHz, corresponding to a magnetic field strength of 3.52 T) and of the same protein in aqueous solution. Cross-polarization transfer rates and proton rotating-frame relaxation time results again indicate that Met-55 and Met-131 are motionally inequivalent in the solid state, and the TCH data indicate that Met-55 is more solidlike. However, we find that 13C chemical shifts in solution and those in the crystalline solid state are in very close agreement, suggesting that the average solution and crystal conformations are the same, in the area of Met-55 and Met-131.  相似文献   

19.
Sperm whale apomyoglobin was reconstituted with selectively deuterated D6-2,4-diacetyldeuterohemin in which the 2H label was confined to the methyl groups of the acetyl moieties. A single resonance was observed in 2H NMR of the cyanoferrimyoglobin derivative, with a chemical shift 0.80 ppm downfield of external D12-TMS at pH 6.7. The corresponding chemical shift of D6-2,4-diacetyldeuterohemin-OMe as the cyanide complex in pyridine-water was 0.96 ppm downfield of external D12-TMS. The prominent HOD peak was well separated at 4.4 ppm downfield. The line width of the porphyrin 2H resonances in both the protein and free solvent environments yields evidence of considerable rotational freedom of the -CD3 groups about their axes.  相似文献   

20.
31P nucleus has proven to be an extremely useful nmr probe of phosphates in biochemical systems. It provides information on their structure and environment; any changes in these two factors are reflected in 31P chemical shift perturbations. This approach has been most useful in studying the nucleic acids backbone conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号