首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The BRCA1 C-terminal (BRCT) domain has recently been implicated as a phospho-protein binding domain. We demonstrate here that a CTBP-interacting protein CtIP interacts with BRCA1 BRCT domains in a phosphorylation-dependent manner. The CtIP/BRCA1 complex only exists in G(2) phase and is required for DNA damage-induced Chk1 phosphorylation and the G(2)/M transition checkpoint. However, the CtIP/BRCA1 complex is not required for the damage-induced G(2) accumulation checkpoint, which is controlled by a separate BRCA1/BACH1 complex. Taken together, these data not only implicate CtIP as a critical player in cell cycle checkpoint control but also provide molecular mechanisms by which BRCA1 controls multiple cell cycle transitions after DNA damage.  相似文献   

3.
The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its role in DNA repair by homologous recombination (HR). Human BRCA2 is 3,418 amino acids and is comprised of multiple domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain modulations.  相似文献   

4.
BRCA2 likely exerts its tumor suppressor function by enhancing the efficiency of the homology-directed repair of injured chromosomes. To help define the DNA repair role of BRCA2, we expressed and purified a polypeptide, BRC3/4-DBD, that harbors its BRC3 and BRC4 repeats and DNA binding domain. BRC3/4-DBD interacted with hRad51 and bound DNA with a distinct preference for single-stranded (ss) DNA. Importantly we demonstrated by biochemical means and electron microscopy that BRC3/4-DBD nucleates hRad51 onto ssDNA and acts as a recombination mediator in enabling hRad51 to utilize replication protein A-coated ssDNA as recombination substrate. These functions of BRC3/4-DBD required both the BRC repeats and the BRCA2 DNA binding domain. The results thus clarify the role of BRCA2 in Rad51-dependent DNA recombination and repair, and the experimental strategies described herein should be valuable for systematically deciphering this BRCA2 function.  相似文献   

5.
DNA double-strand breaks represent the most potentially serious damage to a genome; hence, many repair proteins are recruited to nuclear damage sites by as yet poorly characterized sensor mechanisms. Here, we show that NBS1, the gene product defective in Nijmegen breakage syndrome (NBS), physically interacts with histone, rather than damaged DNA, by direct binding to gamma-H2AX. We also demonstrate that NBS1 binding can occur in the absence of interaction with hMRE11 or BRCA1. Furthermore, this NBS1 physical interaction was reduced when anti-gamma-H2AX antibody was introduced into normal cells and was also delayed in AT cells, which lack the kinase activity for phosphorylation of H2AX. NBS1 has no DNA binding region but carries a combination of the fork-head associated (FHA) and the BRCA1 C-terminal domains (BRCT). We show that the FHA/BRCT domain of NBS1 is essential for this physical interaction, since NBS1 lacking this domain failed to bind to gamma-H2AX in cells, and a recombinant FHA/BRCT domain alone can bind to recombinant gamma-H2AX. Consequently, the FHA/BRCT domain is likely to have a crucial role for both binding to histone and for relocalization of hMRE11/hRAD50 nuclease complex to the vicinity of DNA damage.  相似文献   

6.
Peng M  Litman R  Xie J  Sharma S  Brosh RM  Cantor SB 《The EMBO journal》2007,26(13):3238-3249
FANCJ also called BACH1/BRIP1 was first linked to hereditary breast cancer through its direct interaction with BRCA1. FANCJ was also recently identified as a Fanconi anemia (FA) gene product, establishing FANCJ as an essential tumor suppressor. Similar to other FA cells, FANCJ-null (FA-J) cells accumulate 4N DNA content in response to DNA interstrand crosslinks (ICLs). This accumulation is corrected by reintroduction of wild-type FANCJ. Here, we show that FANCJ interacts with the mismatch repair complex MutLalpha, composed of PMS2 and MLH1. Specifically, FANCJ directly interacts with MLH1 independent of BRCA1, through its helicase domain. Genetic studies reveal that FANCJ helicase activity and MLH1 binding, but not BRCA1 binding, are essential to correct the FA-J cells' ICL-induced 4N DNA accumulation and sensitivity to ICLs. These results suggest that the FANCJ/MutLalpha interaction, but not FANCJ/BRCA1 interaction, is essential for establishment of a normal ICL-induced response. The functional role of the FANCJ/MutLalpha complex demonstrates a novel link between FA and MMR, and predicts a broader role for FANCJ in DNA damage signaling independent of BRCA1.  相似文献   

7.
The BRCA2 tumor suppressor plays significant roles in DNA damage response. The human actin binding protein filamin-1 (hsFLNa, also known as ABP-280) participates in orthogonal actin network, cellular stress responses, signal transduction, and cell migration. Through a yeast two-hybrid system, an in vitro binding assay, and in vivo co-immunoprecipitations, we identified an interaction between BRCA2 and hsFLNa. The hsFLNa binding domain of BRCA2 was mapped to an internal conserved region, and the BRCA2-interacting domain of hsFLNa was mapped to its C terminus. Although hsFLNa is known for its cytoplasmic functions in cell migration and signal transduction, some hsFLNa resides in the nucleus, raising the possibility that it participates in DNA damage response through a nuclear interaction with BRCA2. Lack of hsFLNa renders a human melanoma cell line (M2) more sensitive to several genotoxic agents including gamma irradiation, bleomycin, and ultraviolet-c light. These results suggest that BRCA2/hsFLNa interaction may serve to connect cytoskeletal signal transduction to DNA damage response pathways.  相似文献   

8.
9.
NBS1 (p95), the protein responsible for Nijmegen breakage syndrome, shows a weak homology to the yeast Xrs2 protein at the N terminus region, known as the forkhead-associated (FHA) domain and the BRCA1 C terminus domain. The protein interacts with hMRE11 to form a complex with a nuclease activity for initiation of both nonhomologous end joining and homologous recombination. Here, we show in vivo direct evidence that NBS1 recruits the hMRE11 nuclease complex into the cell nucleus and leads to the formation of foci by utilizing different functions from several domains. The amino acid sequence at 665-693 on the C terminus of NBS1, where a novel identical sequence with yeast Xrs2 protein was found, is essential for hMRE11 binding. The hMRE11-binding region is necessary for both nuclear localization of the complex and for cellular radiation resistance. On the other hand, the FHA domain regulates nuclear foci formation of the multiprotein complex in response to DNA damage but is not essential for nuclear transportation of the complex and radiation resistance. Because the FHA/BRCA1 C terminus domain is widely conserved in eukaryotic nuclear proteins related to the cell cycle, gene regulation, and DNA repair, the foci formation could be associated with many phenotypes of Nijmegen breakage syndrome other than radiation sensitivity.  相似文献   

10.
The Chk2 Ser/Thr kinase plays crucial, evolutionarily conserved roles in cellular responses to DNA damage. Identification of two pro-oncogenic mutations within the Chk2 FHA domain has highlighted its importance for Chk2 function in checkpoint activation. The X-ray structure of the Chk2 FHA domain in complex with an in vitro selected phosphopeptide motif reveals the determinants of binding specificity and shows that both mutations are remote from the peptide binding site. We show that the Chk2 FHA domain mediates ATM-dependent Chk2 phosphorylation and targeting of Chk2 to in vivo binding partners such as BRCA1 through either or both of two structurally distinct mechanisms. Although phospho-dependent binding is important for Chk2 activity, previously uncharacterized phospho-independent FHA domain interactions appear to be the primary target of oncogenic lesions.  相似文献   

11.
12.
CCDC98 targets BRCA1 to DNA damage sites   总被引:4,自引:0,他引:4  
Breast cancer-1 (BRCA1) participates in the DNA damage response. However, the mechanism by which BRCA1 is recruited to DNA damage sites remains elusive. Recently, we have demonstrated that a ubiquitin-binding protein, RAP80, is required for DNA damage-induced BRCA1 translocation. Here we identify another component, CCDC98, in the BRCA1-RAP80 complex. CCDC98 mediates BRCA1's association with RAP80. Moreover, CCDC98 controls both DNA damage-induced formation of BRCA1 foci and BRCA1-dependent G2/M checkpoint activation. Together, our results demonstrate that CCDC98 is a BRCA1 binding partner that mediates BRCA1 function in response to DNA damage.  相似文献   

13.
Ubiquitin (Ub) modifications at sites of DNA double-strand breaks (DSBs) play critical roles in the assembly of signaling and repair proteins. The Ub-interacting motif (UIM) domain of Rap80, which is a component of the BRCA1-A complex, interacts with Ub Lys-63 linkage conjugates and mediates the recruitment of BRCA1 to DSBs. Small ubiquitin-like modifier (SUMO) conjugation also occurs at DSBs and promotes Ub-dependent recruitment of BRCA1, but its molecular basis is not clear. In this study, we identified that Rap80 possesses a SUMO-interacting motif (SIM), capable of binding specifically to SUMO2/3 conjugates, and forms a tandem SIM-UIM-UIM motif at its N terminus. The SIM-UIM-UIM motif binds to both Ub Lys-63 linkage and SUMO2 conjugates. Both the SIM and UIM domains are required for efficient recruitment of Rap80 to DSBs immediately after damage and confer cellular resistance to ionizing radiation. These findings propose a model in which SUMO and Ub modification is coordinated to recruit Rap80 and BRCA1 to DNA damage sites.  相似文献   

14.
The Fanconi anemia (FA) core complex plays a crucial role in a DNA damage response network with BRCA1 and BRCA2. How this complex interacts with damaged DNA is unknown, as only the FA core protein FANCM (the homolog of an archaeal helicase/nuclease known as HEF) exhibits DNA binding activity. Here, we describe the identification of FAAP24, a protein that targets FANCM to structures that mimic intermediates formed during the replication/repair of damaged DNA. FAAP24 shares homology with the XPF family of flap/fork endonucleases, associates with the C-terminal region of FANCM, and is a component of the FA core complex. FAAP24 is required for normal levels of FANCD2 monoubiquitylation following DNA damage. Depletion of FAAP24 by siRNA results in cellular hypersensitivity to DNA crosslinking agents and chromosomal instability. Our data indicate that the FANCM/FAAP24 complex may play a key role in recruitment of the FA core complex to damaged DNA.  相似文献   

15.
BRCA2 is involved in double-stranded DNA break repair by binding and regulating Rad51-mediated homologous recombination. Insights as to how BRCA2 regulates Rad51-mediated DNA repair arose from in vitro biochemical studies on fragments of BRCA2. However, the large 400-kDa BRCA2 protein has hampered our ability to understand the entire process by which full-length BRCA2 regulates Rad51. Here, we show that CeBRC-2, which is only one tenth the size of mammalian BRCA2, complemented BRCA2-deficiency in Rad51 regulation. CeBRC-2 was able to bind to mammalian Rad51 (mRad51) and form distinct nuclear foci when they interacted. In our bimolecular fluorescence complementation analysis (BiFC), we show that the strength of the interaction between CeBRC-2 and mRad51 increased markedly after DNA damage. The BRC motif of CeBRC-2 was responsible for binding mRad51, but without the OB fold, the complex was unable to target damaged DNA. When CeBRC-2 was introduced into BRCA2-deficient cells, it restored Rad51 foci after DNA damage. Our study suggests a mode of action for BRCA2 with regard to DNA repair.  相似文献   

16.
Similar binding sites often imply similar protein-protein interactions and similar functions; however, similar binding sites may also constitute traps for nonfunctional associations. How are similar sites distinguished to prevent misassociations? BRCT domains from breast cancer-susceptibility gene product BRCA1 and protein 53BP1 have similar structures yet different binding behaviors with p53 core domain. 53BP1-BRCT domain forms a stable complex with p53. In contrast, BRCA1-p53 interaction is weak or other mechanisms operate. To delineate the difference, we designed 13 BRCA1-BRCT mutants and computationally investigated the structural and stability changes compared to the experimental p53-53BP1 structure. Interestingly, of the 13, the 2 mutations that are cancerous and involve nonconserved residues are those that enforced p53 core domain binding with BRCA1-BRCT in a way similar to p53-53BP1 binding. Hence, falling into the "similarity trap" may disrupt normal BRCA1 and p53 functions. Our results illustrate how this trap is avoided in the native state.  相似文献   

17.
Loss of the tumour suppressor BRCA1 results in profound chromosomal instability. The fundamental defect underlying this catastrophic phenotype is not yet known. In vivo, BRCA1 forms a heterodimeric complex with BARD1. Both proteins contain an N-terminal zinc RING-finger domain which confers E3 ubiquitin ligase activity. We have isolated full-length human BRCA1/BARD1 complex and have shown that it has a dual E3 ubiquitin ligase activity. First, it mediates the monoubiquitylation of nucleosome core histones in vitro, including the variant histone H2AX that co-localizes with BRCA1 at sites of DNA damage. Secondly, BRCA1/BARD1 catalyses the formation of multiple polyubiquitin chains on itself. Remarkably, this auto-polyubiquitylation potentiates the E3 ubiquitin ligase activity of the BRCA1/BARD1 complex >20-fold. Even though BRCA1 has been reported to associate with a C-terminal ubiquitin hydrolase, BAP1, this enzyme does not appear to function in the deubiquitylation of the BRCA1/BARD1 complex.  相似文献   

18.
The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are ~35 residue peptide motifs that interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose sequence and spacing are evolutionarily conserved. Despite their sequence conservation, there is evidence that the different human BRC repeats have distinct capacities to bind RAD51. A previously published crystal structure reports the structural basis of the interaction between human BRC4 and the catalytic core domain of RAD51. However, no structural information is available regarding the binding of the remaining seven BRC repeats to RAD51, nor is it known why the BRC repeats show marked variation in binding affinity to RAD51 despite only subtle sequence variation. To address these issues, we have performed fluorescence polarisation assays to indirectly measure relative binding affinity, and applied computational simulations to interrogate the behaviour of the eight human BRC-RAD51 complexes, as well as a suite of BRC cancer-associated mutations. Our computational approaches encompass a range of techniques designed to link sequence variation with binding free energy. They include MM-PBSA and thermodynamic integration, which are based on classical force fields, and a recently developed approach to computing binding free energies from large-scale quantum mechanical first principles calculations with the linear-scaling density functional code onetep. Our findings not only reveal how sequence variation in the BRC repeats directly affects affinity with RAD51 and provide significant new insights into the control of RAD51 by human BRCA2, but also exemplify a palette of computational and experimental tools for the analysis of protein-protein interactions for chemical biology and molecular therapeutics.  相似文献   

19.
20.
RecBCD enzyme facilitates loading of RecA protein onto ssDNA produced by its helicase/nuclease activity. This process is essential for RecBCD-mediated homologous recombination. Here, we establish that the C-terminal nuclease domain of the RecB subunit (RecBnuc) forms stable complexes with RecA. Interestingly, RecBnuc also interacts with and loads noncognate DNA strand exchange proteins. Interaction is with a conserved element of the RecA-fold, but because the binding to noncognate proteins decreases in a phylogenetically consistent way, species-specific interactions are also present. RecBnuc does not impede activities of RecA that are important to DNA strand exchange, consistent with its role in targeting of RecA. Modeling predicts the interaction interface for the RecA-RecBCD complex. Because a similar interface is involved in the binding of human Rad51 to the conserved BRC repeat of BRCA2 protein, the RecB-domain may be one of several structural domains that interact with and recruit DNA strand exchange proteins to DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号