首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Regulation of pancreas development by hedgehog signaling   总被引:27,自引:0,他引:27  
Pancreas organogenesis is regulated by the interaction of distinct signaling pathways that promote or restrict morphogenesis and cell differentiation. Previous work has shown that activin, a TGF(beta+) signaling molecule, permits pancreas development by repressing expression of Sonic hedgehog (Shh), a member of the hedgehog family of signaling molecules that antagonize pancreas development. Here we show that Indian hedgehog (Ihh), another hedgehog family member, and Patched 1 (Ptc1), a receptor and negative regulator of hedgehog activity, are expressed in pancreatic tissue. Targeted inactivation of Ihh in mice allows ectopic branching of ventral pancreatic tissue resulting in an annulus that encircles the duodenum, a phenotype frequently observed in humans suffering from a rare disorder known as annular pancreas. Shh(-)(/)(-) and Shh(-)(/)(-) Ihh(+/)(-) mutants have a threefold increase in pancreas mass, and a fourfold increase in pancreatic endocrine cell numbers. In contrast, mutations in Ptc1 reduce pancreas gene expression and impair glucose homeostasis. Thus, islet cell, pancreatic mass and pancreatic morphogenesis are regulated by hedgehog signaling molecules expressed within and adjacent to the embryonic pancreas. Defects in hedgehog signaling may lead to congenital pancreatic malformations and glucose intolerance.  相似文献   

2.
A recent study has shown that deletion of beta-catenin within the pancreatic epithelium results in a loss of pancreas mass. Here, we show that ectopic stabilization of beta-catenin within mouse pancreatic epithelium can have divergent effects on both organ formation and growth. Robust stabilization of beta-catenin during early organogenesis drives changes in hedgehog and Fgf10 signaling and induces a loss of Pdx1 expression in early pancreatic progenitor cells. Together, these perturbations in early pancreatic specification culminate in a severe reduction of pancreas mass and postnatal lethality. By contrast, inducing the stabilized form of beta-catenin at a later time point in pancreas development causes enhanced proliferation that results in a dramatic increase in pancreas organ size. Taken together, these data suggest a previously unappreciated temporal/spatial role for beta-catenin signaling in the regulation of pancreas organ growth.  相似文献   

3.
4.
Hedgehog signaling in pancreas development   总被引:7,自引:0,他引:7  
Hedgehog proteins are secreted molecules that bind to their cell surface receptors to elicit concentration dependent responses essential for numerous tissue patterning and cell differentiation events during embryogenesis. However, during early stages of pancreas organogenesis, hedgehog signaling has been shown to inhibit tissue morphogenesis and cell differentiation. By contrast, recent cell culture studies indicate that an active hedgehog pathway might be required for maintenance of adult endocrine cell functions. This review describes our current understanding of the requirement of hedgehog signaling during pancreas morphogenesis and cell differentiation and discusses how individual hedgehog genes might act at various stages to ensure proper pancreas development and organ function.  相似文献   

5.
Fibroblast growth factors (Fgfs) and their receptors have been implicated in embryonic pancreas development. Recently it was shown that Fgf10, a major ligand for the IIIb isoform of fibroblast growth factor receptor 2 (Fgfr2b), has an important regulatory role in early pancreas development. The aim of our study was to define the role of Fgfr2b in pancreas development by analyzing the phenotype of Fgfr2b (-/-) mice. Pancreases of Fgfr2b (-/-) embryos were noticeably smaller than the wild type littermates during embryogenesis, and pancreatic ductal branching as well as duct cell proliferation was significantly reduced. However, both exocrine and endocrine pancreatic differentiation occurred relatively normally. Exogenous addition of Fgfr2b ligands (Fgf7 and Fgf10) stimulated duct cell proliferation and inhibited endocrine cell differentiation in the ex vivo embryonic organ cultures of wild type pancreas. Our results thus suggest that Fgfr2b-mediated signaling plays a major role in pancreatic ductal proliferation and branching morphogenesis, but has little effect on endocrine and exocrine differentiation.  相似文献   

6.
Fgf10 is a critical component of mesenchymal-to-epithelial signaling during endodermal development. In the Fgf10 null pancreas, the embryonic progenitor population fails to expand, while ectopic Fgf10 expression forces progenitor arrest and organ hyperplasia. Using a conditional Fgf10 gain-of-function model, we observed that the timing of Fgf10 expression affected the cellular competence of the arrested pancreatic progenitors. We present evidence that the Fgf10-arrested progenitor state is reversible and that terminal differentiation resumes upon cessation of Fgf10 production. However, competence towards the individual pancreatic cell lineages depended upon the gestational time of when Fgf10 expression was attenuated. This revealed a competence window of endocrine and ductal cell formation that coincided with the pancreatic secondary transition between E13.5 and E15.5. We demonstrate that maintaining the Fgf10-arrested state during this period leads to permanent loss of competence for the endocrine and ductal cell fates. However, competence of the arrested progenitors towards the exocrine cell fate was retained throughout the secondary transition. Sustained Fgf10 expression caused irreversible loss of Ngn3 expression, which may underlie the loss of endocrine competence. Maintenance of exocrine competence may be attributable to continuous Ptf1a expression in the Fgf10-arrested progenitors. This may explain the rapid induction of Bhlhb8, a normally distalized cell intrinsic marker, following loss of ectopic Fgf10 expression. We conclude that the window for endocrine and ductal cell competence ceases during the secondary transition in pancreatic development.  相似文献   

7.
Embryonic Hedgehog signaling is essential for proper tissue morphogenesis and organ formation along the developing gastrointestinal tract. Hedgehog ligands are expressed throughout the endodermal epithelium at early embryonic stages but excluded from the region that will form the pancreas. Ectopic activation of Hedgehog signaling at the onset of pancreas development has been shown to inhibit organ morphogenesis. In contrast, Hedgehog signaling components are found within pancreatic tissue during subsequent stages of development as well as in the mature organ, indicating that a certain level of pathway activation is required for normal organ development and function. Here, we ectopically activate the Hedgehog pathway midway through pancreas development via expression of either Sonic (Shh) or Indian Hedgehog (Ihh) under control of the human Pax4-promoter. Similar pancreatic defects are observed in both Pax4-Shh and Pax4-Ihh transgenic lines, suggesting that regulation of the overall level of Hedgehog activity is critical for proper pancreas development. We also show that Hedgehog signaling controls mesenchymal vs. epithelial tissue differentiation and that pathway activation impairs formation of epithelial progenitors. Thus, tight control of Hedgehog pathway activity throughout embryonic development ensures proper pancreas organogenesis.  相似文献   

8.
The importance of mesenchymal-epithelial interactions for the proper development of the pancreas has been acknowledged since the early 1960s, even though the molecule(s) mediating this process have remained unknown. We demonstrate here that Fgf10, a member of the fibroblast growth factor family (FGFs), plays an essential role in this process. We show that Fgf10 is expressed in the mesenchyme directly adjacent to the early dorsal and ventral pancreatic epithelial buds. In Fgf10(-/-) mouse embryos, the evagination of the epithelium and the initial formation of the dorsal and ventral buds appear normal. However, the subsequent growth, differentiation and branching morphogenesis of the pancreatic epithelium are arrested; this is primarily due to a dramatic reduction in the proliferation of the epithelial progenitor cells marked by the production of the homeobox protein PDX1. Furthermore, FGF10 restores the population of PDX1-positive cells in organ cultures derived from Fgf10(-/-) embryos. These results indicate that Fgf10 signalling is required for the normal development of the pancreas and should prove useful in devising methods to expand pancreatic progenitor cells.  相似文献   

9.
FGF signaling is required during multiple stages of inner ear development in many different vertebrates, where it is involved in induction of the otic placode, in formation and morphogenesis of the otic vesicle as well as for cellular differentiation within the sensory epithelia. In this study we have looked to define the redundant and conserved roles of FGF3, FGF8 and FGF10 during the development of the murine and avian inner ear. In the mouse, hindbrain-derived FGF10 ectopically induces FGF8 and rescues otic vesicle formation in Fgf3 and Fgf10 homozygous double mutants. Conditional inactivation of Fgf8 after induction of the placode does not interfere with otic vesicle formation and morphogenesis but affects cellular differentiation in the inner ear. In contrast, inactivation of Fgf8 during induction of the placode in a homozygous Fgf3 null background leads to a reduced size otic vesicle or the complete absence of otic tissue. This latter phenotype is more severe than the one observed in mutants carrying null mutations for both Fgf3 and Fgf10 that develop microvesicles. However, FGF3 and FGF10 are redundantly required for morphogenesis of the otic vesicle and the formation of semicircular ducts. In the chicken embryo, misexpression of Fgf3 in the hindbrain induces ectopic otic vesicles in vivo. On the other hand, Fgf3 expression in the hindbrain or pharyngeal endoderm is required for formation of the otic vesicle from the otic placode. Together these results provide important insights into how the spatial and temporal expression of various FGFs controls different steps of inner ear formation during vertebrate development.  相似文献   

10.
Coordinated growth and differentiation of external genitalia generates a proximodistally elongated structure suitable for copulation and efficient fertilization. The differentiation of external genitalia incorporates a unique process, i.e. the formation of the urethral plate and the urethral tube. Despite significant progress in molecular embryology, few attempts have been made to elucidate the molecular developmental processes for external genitalia. The sonic hedgehog (Shh) gene and its signaling genes have been found to be dynamically expressed during murine external genitalia development. Functional analysis by organ culture revealed that Shh could regulate mesenchymally expressed genes, patched 1 (Ptch1), bone morphogenetic protein 4 (Bmp4), Hoxd13 and fibroblast growth factor 10 (Fgf10), in the anlage: the genital tubercle (GT). Activities of Shh for both GT outgrowth and differentiation were also demonstrated. Shh(-/-) mice displayed complete GT agenesis, which is compatible with such observations. Furthermore, the regulation of apoptosis during GT formation was revealed for the first time. Increased cell death and reduced cell proliferation of the Shh(-/-) mice GT were shown. A search for alterations of Shh downstream gene expression identified a dramatic shift of Bmp4 gene expression from the mesenchyme to the epithelium of the Shh mutant before GT outgrowth. Regulation of mesenchymal Fgf10 gene expression by the epithelial Shh was indicated during late GT development. These results suggest a dual mode of Shh function, first by the regulation of initiating GT outgrowth, and second, by subsequent GT differentiation.  相似文献   

11.
Pancreatic organogenesis is promoted or restricted by different signaling pathways. In amniotes, inhibition of hedgehog (Hh) activity in the early embryonic endoderm is a prerequisite for pancreatic specification. However, in zebrafish, loss of Hh signaling leads to a severe reduction of β-cells, leading to some ambiguity as to the role of Hh during pancreas development and whether its function has completely diverged between species. Here, we have employed genetic and pharmacological manipulations to temporally delineate the role of Hh in zebrafish endocrine pancreas development and investigate its relationship with the Bmp and retinoic acid (RA) signaling pathways. We found that Hh is required at the start of gastrulation for the medial migration and differentiation of pdx1-expressing pancreatic progenitors at later stages. This early positive role of Hh promotes β-cell lineage differentiation by restricting the repressive effects of Bmp. Inhibition of Bmp signaling in the early gastrula leads to increased β-cell numbers and partially rescued β-cell formation in Hh-deficient embryos. By the end of gastrulation, Hh switches to a negative role by antagonizing RA-mediated specification of the endocrine pancreas, but continues to promote differentiation of exocrine progenitors. We show that RA downregulates the Hh signaling components ptc1 and smo in endodermal explants, indicating a possible molecular mechanism for blocking axial mesoderm-derived Hh ligands from the prepancreatic endoderm during the specification stage. These results identify multiple sequential roles for Hh in pancreas development and highlight an unexpected antagonistic relationship between Hh and other signaling pathways to control pancreatic specification and differentiation.  相似文献   

12.
Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs) of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1(+/-) mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1(+/-) mice with mice lacking inducible nitric oxide synthase (Nos2) to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1(+/-) Nos2(-/-) mice compared to Ptch1(+/-) Nos2(+/+) mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1(+/+) Nos2(-/-) mice but not from Ptch1(+/-) Nos2(-/-) mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43). Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1(+/+) Nos2(-/-) mice but increased in Ptch1(+/-) Nos2(-/) (-) mice relative to Ptch1(+/-) Nos2(+/+) mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1(+/-) mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during morphogenesis is crucial for their malignant progression.  相似文献   

13.
Zebrafish pectoral fin bud formation is an excellent model for studying morphogenesis. Fibroblast growth factors (Fgfs) and sonic hedgehog (shh) are essential for pectoral fin bud formation. We found that Fgf16 was expressed in the apical ectodermal ridge (AER) of fin buds. A knockdown of Fgf16 function resulted in no fin bud outgrowth. Fgf16 is required for cell proliferation and differentiation in the mesenchyme and the AER of the fin buds, respectively. Fgf16 functions downstream of Fgf10, a mesenchymal factor, signaling to induce the expression of Fgf4 and Fgf8 in the AER. Fgf16 in the AER and shh in the zone of polarizing activity (ZPA) interact to induce and/or maintain each other's expression. These findings have revealed that Fgf16, a newly identified AER factor, plays a crucial role in pectoral fin bud outgrowth by mediating the interactions of AER-mesenchyme and AER-ZPA.  相似文献   

14.
15.
16.
In amniotes, the pancreatic mesenchyme plays a crucial role in pancreatic epithelium growth, notably through the secretion of fibroblast growth factors. However, the factors involved in the formation of the pancreatic mesenchyme are still largely unknown. In this study, we characterize, in zebrafish embryos, the pancreatic lateral plate mesoderm, which is located adjacent to the ventral pancreatic bud and is essential for its specification and growth. We firstly show that the endoderm, by expressing the fgf24 gene at early stages, triggers the patterning of the pancreatic lateral plate mesoderm. Based on the expression of isl1, fgf10 and meis genes, this tissue is analogous to the murine pancreatic mesenchyme. Secondly, Fgf10 acts redundantly with Fgf24 in the pancreatic lateral plate mesoderm and they are both required to specify the ventral pancreas. Our results unveil sequential signaling between the endoderm and mesoderm that is critical for the specification and growth of the ventral pancreas, and explain why the zebrafish ventral pancreatic bud generates the whole exocrine tissue.  相似文献   

17.
S Roy  T Qiao  C Wolff  P W Ingham 《Current biology : CB》2001,11(17):1358-1363
Recent studies have implicated the signaling factor Sonic hedgehog (Shh) as a negative regulator of pancreatic development, but as a positive regulator of pancreas function in amniotes [1-4]. Here, using genetic analysis, we show that specification of the pancreas in the teleost embryo requires the activity of Hh proteins. Zebrafish embryos compromised in Hh signaling exhibit disruption in the expression of the pancreas-specifying homeobox gene pdx-1 and concomitantly show almost complete absence of the endocrine pancreas. Reciprocally, ubiquitous activation of the Hh pathway in wild-type embryos causes ectopic induction of endodermal pdx-1 expression and the differentiation of supernumerary endocrine cells. Our results suggest that Hh proteins influence pancreas specification via inductive interactions from the axial midline rather than through their localized expression in the endodermal cells themselves.  相似文献   

18.
19.
Epithelial hedgehog signals pattern the intestinal crypt-villus axis   总被引:5,自引:0,他引:5  
Morphological development of the small intestinal mucosa involves the stepwise remodeling of a smooth-surfaced endodermal tube to form finger-like luminal projections (villi) and flask-shaped invaginations (crypts). These remodeling processes are orchestrated by instructive signals that pass bidirectionally between the epithelium and underlying mesenchyme. Sonic (Shh) and Indian (Ihh) hedgehog are expressed in the epithelium throughout these morphogenic events, and mice lacking either factor exhibit intestinal abnormalities. To examine the combined role of Shh and Ihh in intestinal morphogenesis, we generated transgenic mice expressing the pan-hedgehog inhibitor, Hhip (hedgehog interacting protein) in the epithelium. We demonstrate that hedgehog (Hh) signaling in the neonatal intestine is paracrine, from epithelium to Ptch1-expressing subepithelial myofibroblasts (ISEMFs) and smooth muscle cells (SMCs). Strong inhibition of this signal compromises epithelial remodeling and villus formation. Surprisingly, modest attenuation of Hh also perturbs villus patterning. Desmin-positive smooth muscle progenitors are expanded, and ISEMFs are mislocalized. This mesenchymal change secondarily affects the epithelium: Tcf4/beta-catenin target gene activity is enhanced, proliferation is increased, and ectopic precrypt structures form on villus tips. Thus, through a combined Hh signal to underlying ISEMFs, the epithelium patterns the crypt-villus axis, ensuring the proper size and location of the emerging precrypt compartment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号