首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty-four mutants of Alcaligenes eutrophus H 16 were isolated which grew poorly or not at all under autotrophic conditions. Four types were characterized with respect to their defects and their physiological properties. One mutant lacked both enzymes specific for autotrophic CO2 fixation, another one lacked both hydrogenases, and two mutants lacked either the membrane-bound or the soluble hydrogenase. Comparing the results of studies on these mutant types, the following conclusions were drawn: the lack of each hydrogenase enzyme could be partially compensated by the other one; the lack of membrane-bound hydrogenase did not affect autotrophic growth, whereas the lack of the soluble hydrogenase resulted in a decreased autotrophic growth rate. When pyruvate as well as hydrogen were supplied to the wild-type, the cell yield was higher than in the presence of pyruvate alone. Mutant experiments under these conditions indicated that either of both hydrogenases was able to add to the energy supply of the cell. Only the soluble hydrogenase was involved in the control of the rate of hydrogen oxidation by carbon dioxide; the mutant lacking this enzyme did not respond to the presence or absence of CO2. The suppression of growth on fructose by hydrogen could be mediated by either of both hydrogenases alone.  相似文献   

2.
The nickel-dependent chemolithoautotrophic growth of Alcaligenes eutrophus is apparently due to a requirement of nickel for active hydrogenase formation. Cells grown heterotrophically with fructose and glycerol revealed a specific activity of soluble and membrane-bound hydrogenase which was severalfold higher than the normal autotrophic level. The omission of nickel from the medium did not affect heterotrophic growth, but the soluble hydrogenase activity was reduced significantly. In the presence of ethylenediaminetetraacetic acid (EDTA), almost no hydrogenase activity was detected. The addition of nickel allowed active hydrogenase formation even when EDTA was present. When chloramphenicol was added simultaneously with nickel to an EDTA-containing medium, almost no hydrogenase activity was found. This indicates that nickel ions are involved in a process which requires protein synthesis and not the direct reactivation of a preformed inactive protein. The formation of the membrane-bound hydrogenase also appeared to be nickel dependent. Autotrophic CO2 assimilation did not specifically require nickel ions, since formate was utilized in the presence of EDTA and the activity of ribulosebisphosphate carboxylase was not affected under these conditions.  相似文献   

3.
Chemoautotrophic growth of Alcaligenes eutrophus 17707 is inhibited by 20% oxygen in the gas phase. Lowering the oxygen concentration to 4% results in chloramphenicol-sensitive derepression of soluble and membrane-bound hydrogenase activity (and of soluble hydrogenase antigen), showing that oxygen inhibition is due at least in part to repression of hydrogenase synthesis. Mutations resulting in derepression of hydrogenase activity (and antigen) under 25% oxygen (Ose-) mobilized with a self-transmissable plasmid which is already known to carry genes necessary for hydrogenase expression. Plasmid-borne mutations resulting in loss of soluble hydrogenase activity have no effect on the Ose phenotype, but chromosomal mutations resulting in reduction or loss of both hydrogenase activities cannot be made Ose-. The Ose- mutation does not alter the thermostability of either hydrogenase, and soluble hydrogenase in the mutant reacts with complete identity with that of the wild type, indicating that the Ose- phenotype does not result from structural alterations in either enzyme. Ose- mutants are also relieved of normal hydrogenase repression by organic substrates, which aggravates hydrogenase-mediated inhibition of heterotrophic growth by hydrogen. Regulation of hydrogenase in Ose- strains of A. eutrophus 17707 is nearly identical to that of wild-type A. eutrophus strains H1 and H16.  相似文献   

4.
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autotrophic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studies, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidation by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO2-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.  相似文献   

5.
The membrane-bound hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii were purified extensively and compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of each hydrogenase revealed two prominent protein bands, one near 60 kilodaltons and the other near 30 kilodaltons. The migration distances during nondenaturing polyacrylamide gel electrophoresis were similar for all except A. vinelandii hydrogenase, which migrated further than the other three. The amino acid composition of each hydrogenase was determined, revealing substantial similarity among these enzymes. This was confirmed by calculation of S delta Q values, which ranged from 8.0 to 26.7 S delta Q units. S delta Q is defined as sigma j(Xi,j-Xk,j)2, where i and k identify the proteins compared and Xj is the content (residues per 100) of a given amino acid of type j. The hydrogenases of this study were also compared with an enzyme-linked immunosorbent assay. Antibody raised against B. japonicum hydrogenase cross-reacted with all four hydrogenases, but to various degrees and in the order B. japonicum greater than A. latus greater than A. eutrophus greater than A. vinelandii. Antibody raised against A. eutrophus hydrogenase also cross-reacted with all four hydrogenases, following the pattern of cross-reaction A. eutrophus greater than A. latus = B. japonicum greater than A. vinelandii. Antibody raised against B. japonicum hydrogenase inhibited B. japonicum hydrogenase activity to a greater extent than the A. eutrophus and A. latus activities; no inhibition of A. vinelandii hydrogenase activity was detected. The results of these experiments indicated remarkable homology of the hydrogenases from these four microorganisms.  相似文献   

6.
The agarose-coupled triazine dye Procion Red HE-3B has been demonstrated to be applicable as an affinity gel for the purification of five diverse hydrogenases, namely the soluble, NAD-specific and the membrane-bound hydrogenase of Alcaligenes eutrophus, the membrane-bound hydrogenase of the N2-fixing Alcaligenes latus, the reversible H2-evolving and the unidirectional H2-oxidizing hydrogenase of Clostridium pasteurianum. In the case of the soluble hydrogenase of A. eutrophus, chromatography on Procion Red-agarose even permitted the separation of inactive from active enzyme, thus yielding a 2-3-fold increase in specific activity. For the homogeneous enzyme preparation obtained after two column steps (Procion Red-agarose, DEAE-Sephacel), a specific activity of 121 mumol of H2 oxidized/min per mg of protein was determined. Kinetic studies with free Procion Red provided evidence that the diverse hydrogenases are competitively inhibited by the dye, each with respect to the electron carrier (NAD, Methylene Blue, Methyl Viologen), indicating a specific interaction between Procion Red and the catalytic centres of the enzymes. For the highly purified preparations of the soluble and the membrane-bound hydrogenase of A. eutrophus, in 50 mM-potassium phosphate, pH 7.0, Ki values for Procion Red of 103 and 19 microM have been determined.  相似文献   

7.
Whereas the membrane-bound hydrogenase from Alcaligenes eutrophus H16 is an integral membrane protein and can only be solubilized by detergent treatment, the membrane-bound hydrogenase of Alcaligenes eutrophus type strain was found to be present in a soluble form after cell disruption. For the enzyme of A. eutrophus H16 a new, highly effective purification procedure was developed including phase separation with Triton X-114 and triazine dye chromatography on Procion Blue H-ERD-Sepharose. The purification led to an homogeneous hydrogenase preparation with a specific activity of 269 U/mg protein (methylene blue reduction) and a yield of 45%. During purification and storage the enzyme was optimally stabilized by the presence of 0.2 mM MnCl2. The hydrogenase of A. eutrophus type strain was purified from the soluble extract by a similar procedure, however, with less specific activity and activity yield. Comparison of the two purified enzymes revealed no significant differences: They have the same molecular weight, both consist of two different subunits (Mr = 62,000, 31,000) and both have an isoelectric point near pH 7.0. They have the same electron acceptor specificity reacting with similar high rates and similar Km values. The acceptors reduced include viologen dyes, flavins, quinones, cytochrome c, methylene blue, 2,6-dichlorophenolindophenol, phenazine methosulfate and ferricyanide. Ubiquinones and NAD were not reduced. The two hydrogenases were shown to be immunologically identical and both have identical electrophoretic mobility. For the membrane-bound hydrogenase of A. eutrophus H16 it was demonstrated that this type of hydrogenase in its solubilized, purified state is able to catalyze also the reverse reaction, the H2 evolution from reduced methyl viologen.  相似文献   

8.
Mutants of Alcaligenes eutrophus were isolated on the basis of their inability to grow on succinate as the sole source of carbon and energy. The mutants also failed to grow on other gluconeogenic substrates, including pyruvate, acetate, and citrate. Simultaneously, they had lost their capability for autotrophic growth. The mutants grew, but slower than the wild type, on fructose or gluconate. Growth retardation on gluconate was more pronounced. The mutants lacked phosphoglycerate mutase activity, and spontaneous revertants of normal growth phenotype had regained the activity. The physiological characteristics of the mutants indicate the role of phosphoglycerate mutase in heterotrophic and autotrophic carbon metabolism of A. eutrophus. Although the enzyme is necessary for gluconeogenesis during heterotrophic growth on three- or four-carbon substrates, its glycolytic function is not essential for the catabolism of fructose or gluconate via the Entner-Doudoroff pathway. The enzyme is required during autotrophic growth as a catalyst in the biosynthetic route leading from glycerate 3-phosphate to pyruvate. It is suggested that the mutants accomplish the complete degradation of fructose and gluconate mutase lesion. The catabolically produced triose phosphates are converted to fructose 6-phosphate which is rechanneled into the Entner-Doudoroff pathway. This carbon recycling mechanism operates less effectively in mutant cells growing on gluconate.  相似文献   

9.
Alcaligenes eutrophus grew well autotrophically with molecular hydrogen at 30 degrees C, but failed to grow at 37 degrees C (Hox Ts). At this temperature the strain grew well heterotrophically with a variety of organic compounds and with formate as an autotrophic substrate, restricting the thermolabile character to hydrogen metabolism. The soluble hydrogenase activity was stable at 37 degrees C. The catalytic properties of the wild-type enzyme were identical to those of a mutant able to grow lithoautotrophically at 37 degrees C (Hox Tr). Soluble hydrogenase was not rapidly degraded at elevated temperatures since the preformed enzyme remained stable for at least 5 h in resting cells or was diluted by growth, as shown in temperature shift experiments. Immunochemical studies revealed that the formation of the hydrogenase proteins was temperature sensitive. No cross-reactivity was detected above temperatures of 34 degrees C. The genetic information of Hox resides on a self-transmissible plasmid in A. eutrophus. Using Hox Tr mutants as donors of hydrogen-oxidizing ability resulted in Hox+ transconjugants which not only had recovered plasmid pHG1 and both hydrogenase activities but also were temperature resistant. This is evidence that the Hox Tr phenotype is coded by plasmid pHG1.  相似文献   

10.
In Alcaligenes eutrophus, the formation of the hydrogenases and of five new peptides is subject to the hydrogenase control system. Of these, the B peptide was purified to homogeneity. This protein (Mr, 37,500) was composed of two identical subunits (Mr, 18,800). Antibodies against the B protein were used for its quantification by rocket immunoelectrophoresis. About 4% of the total protein consisted of the B protein; its molar ratio to the NAD-linked hydrogenase was about 4:1. The B protein appeared to be associated with the NAD-linked hydrogenase, as shown by gel filtration analysis with Sephadex G-200. The B protein was not detected in cells that had not expressed the hydrogenase proteins or that lacked the genetic information of the hydrogen-oxidizing character; it was also not detected in Tn5 insertional mutants that were unable to form soluble hydrogenase antigens. Immunochemical analysis of other species and genera than A. eutrophus revealed that only strains able to form a NAD-linked hydrogenase also formed B-protein antigens. The B protein is not required for the catalytic activity of soluble hydrogenase in vitro; its function is at present unknown.  相似文献   

11.
Activation and active sites of nickel-containing hydrogenases   总被引:2,自引:0,他引:2  
Hydrogenases that contain nickel and iron-sulphur clusters also have a regulatory mechanism, by which exposure to oxidants such as oxygen prevents their reaction with hydrogen. Treatment with reducing agents then causes reactivation. In some hydrogenases from Desulfovibrio species, there is evidence that there are at least two different deactivated states, which differ in their rates of reductive reactivation. The membrane-bound hydrogenase of D. desulfuricans, Norway strain, the periplasmic hydrogenase of D. gigas and the membrane-bound hydrogenase of Alcaligenes eutrophus can be isolated in a state (termed "Unready") which requires up to several hours for full activation by hydrogen. By contrast the soluble hydrogenases of D. desulfuricans and A. eutrophus can be reactivated relatively rapidly. In all of these enzymes, with the exception of the latter one, the existence of the activated and deactivated states can be correlated with different ESR-detectable forms of nickel. The possible functions of nickel and [Fe-4S] clusters in catalysis are discussed.  相似文献   

12.
Methylococcus capsulatus (Bath) was shown to contain two distinct hydrogenases, a soluble hydrogenase and a membrane-bound hydrogenase. This is the first report of a membrane-bound hydrogenase in methanotrophs. Both enzymes were expressed apparently constitutively under normal growth conditions. The soluble hydrogenase was capable of reducing NAD(+) with molecular hydrogen. The activities of both soluble and particulate methane monooxygenases could be driven by molecular hydrogen. This confirmed that molecular hydrogen could be used as a source of reducing power for methane oxidation. Hydrogen-driven methane monooxygenase activities tolerated elevated temperatures and moderate oxygen concentrations. The significance of these findings for biotechnological applications of methanotrophs is discussed.  相似文献   

13.
The effect of molecular hydrogen on heterotrophic metabolism of the facultative chemolithoautotrophic bacterium Alcaligenes eutrophus strain H 16 was representatively investigated on histidine utilization. The presence of hydrogen in a histidine or urocanate-containing medium had two effects (i) growth of the cells was inhibited, and (ii) formation of histidase was repressed. Both effects were relieved by supplying the cells with exogenous carbon dioxide. Studies on mutants defective in chemolithoautotrophic metabolism revealed that growth inhibition by hydrogen was exclusively mediated by the catalytic function of the soluble hydrogenase. Mutants containing only particulate hydrogenase activity did not exhibit growth inhibition. Repression of histidase formation, however, was mediated by the catalytic activity of the soluble as well as the particulate hydrogenase. Unexpectedly, mutants defective in autotrophic carbon dioxide fixation but unaffected in hydrogen oxidation showed an inhibition of growth by hydrogen but no repression of histidase synthesis. Mutants which formed histidase constitutively were still sensitive to repression in the presence of hydrogen. The results indicate that repression of enzyme synthesis by hydrogen is dependent on the function of both, the hydrogen-oxidizing and the carbon dioxide-fixing system. It is concluded that the hydrogen effect is a transient regulatory mechanism and only relevant for unbalanced conditions of growth.  相似文献   

14.
When strains and mutants of the strictly aerobic hydrogen-oxidizing bacterium Alcaligenes eutrophus are grown heterotrophically on gluconate or fructose and are subsequently exposed to anaerobic conditions in the presence of the organic substrates, molecular hydrogen is evolved. Hydrogen evolution started immediately after the suspension was flushed with nitrogen, reached maximum rates of 70 to 100 mumol of H2 per h per g of protein, and continued with slowly decreasing rates for at least 18 h. The addition of oxygen to an H2-evolving culture, as well as the addition of nitrate to cells (which had formed the dissimilatory nitrate reductase system during the preceding growth), caused immediate cessation of hydrogen evolution. Formate is not the source of H2 evolution. The rates of H2 evolution with formate as the substrate were lower than those with gluconate. The formate hydrogenlyase system was not detectable in intact cells or crude cell extracts. Rather the cytoplasmic, NAD-reducing hydrogenase is involved by catalyzing the release of excessive reducing equivalents under anaerobic conditions in the absence of suitable electron acceptors. This conclusion is based on the following experimental results. H2 is formed only by cells which had synthesized the hydrogenases during growth. Mutants lacking the membrane-bound hydrogenase were still able to evolve H2. Mutants lacking the NAD-reducing or both hydrogenases were unable to evolve H2.  相似文献   

15.
Phosphoribulokinase in Alcaligenes eutrophus was partially inactivated when an autotrophic culture was shifted to heterotrophic growth with pyruvate as the sole source of carbon and energy. A similar response was observed on addition of various organic substrates to autotrophic cultures during the transition to mixotrophic growth. The extent of inactivation depended on the added substrate. Pyruvate or lactate caused the strongest inactivation among the tested substrates. Up to 75% of the phosphoribulokinase activity found in the autotrophic cells was lost within 30 min after supplementation of the cultures with either of these two substrates. This loss of enzyme activity was not the result of degradation of enzyme protein. Inactivation of phosphoribulokinase was accompanied by a decrease in the CO2 fixation rate of the cells. Reactivation of the enzyme occurred after exhaustion of pyruvate from the medium. Neither inactivation nor reactivation required de novo protein synthesis; however, continued energy conversion was necessary for the inactivation to occur. We suggest that the pyruvate metabolism of A. eutrophus is involved in these regulatory processes which act on phosphoribulokinase. They appear to contribute to the control of autotrophic CO2 assimilation in this organism.  相似文献   

16.
Multiple forms of bacterial hydrogenases   总被引:12,自引:7,他引:5  
Ackrell, B. A. C. (University of Hawaii, Honolulu), R. N. Asato, and H. F. Mower. Multiple forms of bacterial hydrogenases. J. Bacteriol. 92:828-838. 1966.-Extracts of certain bacterial species have been shown by disc electrophoresis on polyacrylamide gel to contain multiple hydrogenase systems. The hydrogenase enzymes comprising these systems have different electrophoretic mobilities and produce a band pattern that is unique for each bacterial species. Of 20 bacterial species known to possess hydrogenase activity and which were examined by this technique, only the activities of Clostridium tetanomorphum and C. thermosaccharolyticum could be attributed, at pH 8.3, to a single hydrogenase enzyme. This multiplicity of hydrogenase forms was found both in bacteria which contain mostly soluble hydrogenases and in those where the hydrogenase is predominantly associated with particulate material. When solubilization of this particulate material could be effected, at least two solubilized hydrogenases were released, and, of these, one would have the same electrophoretic properties (i.e., R(F)) as one of the soluble hydrogenases already present in small amounts within the cell. Different growth conditions for various types of bacteria, such as the nitrogen source, the degree of aeration, and photosynthetic versus aerobic growth in the dark, as well as the conditions under which the cells were stored, markedly affected the hydrogenase activity of the cells, but not their hydrogenase band pattern. The disc electrophoresis technique proved to be 10 times more sensitive than the manometric technique in detecting hydrogenase activity.  相似文献   

17.
Mutations in the genes coding for the soluble and the membrane-bound hydrogenase of Alcaligenes eutrophus strain H16 significantly affected the expression of respiratory chain components. In lithoautotrophically grown wild type cells electron flow mainly proceeded via the cytochrome c oxidases. Mutants defective in the membrane-bound hydrogenase contained a 2- to 3-fold higher cytochrome a content than the wild type and cytochrome c oxidase of the aa3-type was preferentially used by these cells for substrate oxidation. Mutants impaired in the soluble hydrogenase revealed slow growth on hydrogen, presumably due to inefficient reverse electron flow mechanisms which provide the cells with NADH for autotrophic CO2-fixation. In this class of mutants the two quinol oxidases of the o- and d-type in addition to the co-type oxidase were the predominant electron-transport branches.  相似文献   

18.
Two key autotrophic enzyme systems, hydrogenase and ribulose diphosphate carboxylase, were examined in Mycobacterium gordonae and two other chemolithotrophic, scotochromogenic mycobacteria under different cultural conditions. In all three organisms both enzymes were inducible and were produced in significant levels only in the presence of the specific substrate, hydrogen or carbon dioxide. M. gordonae exhibited increased growth rates and yields, indicating mixotrophic growth, in the presence of a number of single organic substrates, including acetate, pyruvate, glucose, fructose, and glycerol. In contrast to other aerobic hydrogen autotrophs, the presence of either acetate or pyruvate did not repress ribulose diphosphate carboxylase, and mixotrophic growth was rapid with these substrates. In the absence of carbon dioxide, growth in glycerol medium under an atmosphere of hydrogen and oxygen was severely inhibited, even with cells preadapted to heterotrophic growth on glycerol. Cyclic adenosine monophosphate was not effective in inducing hydrogenase or carboxylase in heterotrophic, mixotrophic, or hydrogen-inhibited cultures.  相似文献   

19.
Growth of various bacteria, especially aerobic hydrogen-oxidizing bacteria, in the presence of 2 to 100% (v/v) oxygen in the gas atmosphere was evaluated. The bacterial strains included Alcaligenes eutrophus, A. paradoxus, Aquaspirillum autotrophicum, Arthrobacter spec. strain 11X, Escherichia coli, Arthrobacter globiformis, Nocardia opaca, N. autotrophica, Paracoccus denitrificans, Pseudomonas facilis, P. putida, and Xanthobacter autotrophicus. Under heterotrophic conditions with fructose or gluconate as substrates neither colony formation on solid medium nor the growth rates in liquid media were drastically impaired by up to 100% oxygen. In contrast, autotrophic growth — with hydrogen, carbon dioxide and up to 80% oxygen in the gas atmosphere — was strongly depressed by high oxygen concentrations. However, only the growth rate, not the viability of the cells, was decreased. Growth retardation was accompanied by a decrease of hydrogenase activity.The work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

20.
The gram-negative anaerobic gut bacterium Bilophila wadsworthia is the third most common isolate in perforated and gangrenous appendicitis, being also found in a variety of other infections. This organism performs a unique kind of anaerobic respiration in which taurine, a major organic solute in mammals, is used as a source of sulphite that serves as terminal acceptor for the electron transport chain. We show here that molecular hydrogen, one of the major products of fermentative bacteria in the colon, is an excellent growth substrate for B. wadsworthia. We have quantified the enzymatic activities associated with the oxidation of H2, formate and pyruvate for cells obtained in different growth conditions. The cell extracts present high levels of hydrogenase activity, and up to five different hydrogenases can be expressed by this organism. One of the hydrogenases appears to be constitutive, whereas the others show differential expression in different growth conditions. Two of the hydrogenases are soluble and are recognised by antibodies against a [FeFe] hydrogenase of a sulphate reducing bacterium. One of these hydrogenases is specifically induced during fermentative growth on pyruvate. Another two hydrogenases are membrane-bound and show increased expression in cells grown with hydrogen. Further work should be carried out to reveal whether oxidation of hydrogen contributes to the virulence of B. wadsworthia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号