首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Behaviour of fluorescent carbocyanine probe disS-C3(5) in the egg lecithin-cholesterol membrane suspension was studied in relation to the lecithin/cholesterol ratio. The partition coefficient of the probe between aqueous and lipid phases decreases unlinearly with increase of cholesterol molar part in a bilayer. This parameter over molar part units was estimated to be (2.4 +/- 0.1) X 10(6) for egg lecithin membranes and (1.8 +/- 0.2) X 10(6) for 10 mol% cholesterol, (1.2 +/- 0.1) X 10(6) for 20, (0.8 +/- 0.1) X 10(6) for 30, and (0.48 +/- 0.02) X 10(6) for 50 mol% cholesterol. It is suggested that the probe partition coefficient value consists of two components: one caused by pure lecithin bilayer regions and another by local lecithin concentration fluctuations in the mixed lecithin-cholesterol regions.  相似文献   

2.
The novel fluorescent membrane probe, bis(cyclohexyl)-BODIPY (BCHB)-labeled phosphatidylcholine, is structurally similar to 1,3,5,7-tetramethyl-BODIPY (TMB)-labeled phosphatidylcholine. Formally, BCHB and TMB have similar systems of conjugated bonds; however, spectral properties of the probes are notably different. BCHB and TMB have a perfect spectral overlap. The fact makes BCHB a good FRET acceptor for TMB. Thus, the pair of phosphatidylcholines labeled with BCHB and TMB is a good tool for FRET-based membrane studies, e.g. lipid transfer studies.  相似文献   

3.
4.
The interaction of the probe diS-C3-(5) with dipalmitoylphosphatidylcholine (DPPC) liposomes has been studied using fluorescence and differential scanning calorimetry (DSC). The partition coefficients (K) of the probe for the lipid and the aqueous phase (in terms of molar part units) were (1.20 +/- 0.4) X 10(6) at 45 degrees C and (0.50 +/- 0.07) X 10(6) at 23 and 36 degrees C. In terms of volume concentration units, these values correspond to Kp = (2.88 +/- 0.10) X 10(4) and Kp = (1.20 +/- 0.17) X 10(4), respectively. DSC thermograms were practically identical both for large unilamellar and multilamellar liposomes. The main transition peak remained practically unchanged over the entire range of the probe concentrations used. The pretransition could be observed up to maximal probe concentrations applied and it widened and shifted from 35.4 degrees C in pure DPPC to approximately 32 degrees C at a probe/lipid ratio of 0.027. These results suggest that in both quasicrystalline and liquid crystalline lipid bilayers the probe molecules are included in "defects" between structurally ordered microregions (microdomains or clusters). The dependence of the fluorescence response on the transmembrane potential in a suspension of unilamellar DPPC vesicles suggest that the equilibrium thermodynamic model is valid for liquid crystalline bilayers.  相似文献   

5.
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature.  相似文献   

6.
Several photo-physical methods together with 31P-NMR have been used to investigate the effect of lysophosphatidylcholine on phosphatidylcholine bilayers. 31P-NMR shows that the permeability of the vesicle to Eu3+ increases sharply above approx. 40% lysophosphatidylcholine: fluorescence-quenching studies also show this type of behavior. Similar sharp changes in vesicle properties are observed via the photo-physical technique at this lysophosphatidylcholine/phosphatidylcholine composition. Fluorescence spectra of pyrene and pyrene carboxaldehyde show that increasing lysophosphatidylcholine composition increases the polarity of the environments of these probes up to 40% lysocompound. Above this composition the photo-physical properties of the probes slowly revert to those characteristic of the micellar lyso-compound. The pyrene fluorescence lifetime, the fine structure of the fluorescence, and the case of formation of pyrene excimer in these bilayer mixtures suggest that pyrene complexes weakly with the charged nitrogen of the choline group of the phosphatidylcholine and that the physical state of the system has a striking effect on this complexation process. Similar experiments with simple quaternary compounds lend strong support to this suggestion. The studies monitor in several ways the effect of bilayer composition on movement of molecules in these systems. The degree or site of solubilization of carcinogens is also uniquely affected by composition.  相似文献   

7.
8.
Ubiquinone-10 and ubiquinol-10 were incorporated into dipalmitoylphosphatidylcholine vesicles and their interaction with the phospholipids was monitored by fluorescence measurements of diphenylhexatriene used as a probe. It was found that ubiquinone-10 did not perturb the phospholipid thermotropic pretransition but ubiquinol-10 was able to do so. Although, in ethanolic solution, ubiquinone-10 was a better quencher of diphenylhexatriene than ubiquinol-10, when incorporated into phospholipid multibilayers and at temperatures above Tc, ubiquinone-10 produced a smaller decrease in the intensity of the fluorescence probe than ubiquinol-10. Furthermore, the fluorescence anisotropy of the probe was significantly increased by ubiquinol-10 but not by ubiquinone-10. It was concluded that both forms of coenzyme Q have different localizations in the phospholipid bilayer.  相似文献   

9.
The effect of the fluorophore trans-parinaric acid on the structure of lipid bilayer was studied and compared with the effect of other 'perturbants'. These include commonly used fluorophores (diphenylhexatriene, heptadecylhydroxycoumarin, cis-parinaric acid and two fatty acids, palmitic and oleic acids). Differential scanning calorimetry (DSC) and proton nuclear magnetic resonance techniques were used to evaluate structural changes in the lipid bilayers. The thermodynamic parameters of dipalmitoylphosphatidylcholine multilamellar vesicles obtained from the DSC thermograms suggest that trans-parinaric acid differs from the other 'perturbants'. trans-Parinaric acid has the most pronounced impact on the Tm, the width (delta T1/2) and the index of asymmetry of the main gel to liquid crystalline phase transition without any effect on its transition, delta H. The presence of trans-parinaric acid in the lipid bilayer of dimyristoylphosphatidylcholine small unilamellar vesicles influences the chemical shift difference between the choline protons of phosphatidylcholine molecules present in the two leaflets of the vesicle bilayer (delta delta H). This suggests that trans-parinaric acid affects the head group packing in the bilayer. Its main effect is abolishing the major alterations in head group packing that occur through the phase transition. The above data indicate that trans-parinaric acid is concentrated in the gel phase domains, whereby it stabilizes the phase separation between the gel and liquid crystalline phases, probably by affecting lipid molecules present in the boundary regions between these two domain types.  相似文献   

10.
11.
The relationship between the conditions of membrane labelling by the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) and its fluorescence parameters was investigated. In the labelling solutions prepared by the usual method, the presence of DPH microcrystals was revealed which led to the lower resultant fluorescence anisotropy values. Lower labelling efficiency was observed with DPH solutions in tetrahydrofuran when compared with solutions in acetone. Modifications of the labelling procedure are proposed which give better reproducibility of the results. There modified method involves the preparation of a 2 X 10(-4) mol. 1(-1) DPH stock solution in acetone, a 100-fold dilution in an appropriate buffer, subsequent bubbling through with nitrogen for 30 min and mixing the resulting solution with cell/membrane suspension in a 1:1 (v/v) ratio. Changes in intensity, anisotropy and spectra of DPH fluorescence in the course of membrane labelling were studied. A two-stage model of the incorporation of DPH into membranes was proposed, according to which DPH molecules first quickly adhere to the membrane surface and then are slowly translocated to the apolar regions of the membrane.  相似文献   

12.
Fluorescence photomicrographs show that the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) binds to hydrophobic components of intact 3T3 cells. Cells exposed to ANS exhibit fluorescence in the cytoplasm, intense nuclear membrane fluorescence, and well-defined fluorescent nucleoli. Fluorescence titrations of 3T3 cells with ANS show a decrease in fluorescence intensity, a blue shift of native cell emission with increasing ANS concentration and the appearance of a new peak due to ANS fluorescence. These fluorescence effects are ascribed to energy transfer processes involving bound ANS and the tryptophan and tyrosine residues of cellular proteins. ANS bound to 3T3 cells appears to quench the long wavelength component of the cellular tryptophan fluorescence, resulting in an unmasking of tryptophan and tyrosine emission at shorter wavelengths.  相似文献   

13.
Synthesis and physical properties of a new anthracene fatty acid, 9-(2-anthryl)nonanoic acid, and the corresponding anthracene-phosphatidylcholines which were obtained by condensing the acid with sn-1-palmitoyl-lysophosphatidylcholine (PAPC) and with egg lysophosphatidylcholine (EAPC) are described. Differential scanning calorimetry experiments show that these lipids can undergo a liquid-crystal to gel phase transition at temperatures of 15°C and 18°C for EAPC and PAPC, respectively. In monolayers, PAPC exhibits a compression curve nearly superimposable to that of dipalmitoylphosphatidylcholine (DPPC), with a molecular area of 0.48 nm2 at π = 30 mN m?1. The data indicate that in these lipids, the anthracene group is only slightly more bulky than a normal acyl chain and that it does not significantly affect the regular phospholipid molecular packing. In ethanol solutions or when incorporated into egg phosphatidylcholine liposomes in a molar ratio of 1%, these lipids display UV absorption spectra and fluorescence emission spectra similar to those of 2-methyl anthracene. For EAPC liposomes, a broad and structureless fluorescence emission spectrum centered at around 450 nm, was recorded, suggesting the occurrence of anthracene excimers. As ascertained by UV spectrophotometry, differential scanning calorimetry, fluorescence polarization and anthracene photodimerization experiments, EAPC displays good miscibility properties with lipids in the liquid state (egg phosphatidylcholine) or in the gel state (distearoylphosphatidylcholine (DSPC)). The potential of these anthracene derivatives for studying the dynamics and the topological distribution of lipids in biomembranes is discussed.  相似文献   

14.
15.
Interactions between the graft copolymer poly(L-lysine)-g-poly(ethylene glycol), PLL-g-PEG, and two kinds of surface-supported lipidic systems (supported phospholipid bilayers and supported vesicular layers) were investigated by a combination of microscopic and spectroscopic techniques. It was found that the application of the copolymer to zwitterionic or negatively charged supported bilayers in a buffer of low ionic strength led to their decomposition, with the resulting formation of free copolymer-lipid complexes. The same copolymer had no destructive effect on a supported vesicular layer made up of vesicles of identical composition. A comparison between poly(L-lysine), which did not induce decomposition of supported bilayers, and PLL-g-PEG copolymers with various amounts of PEG side chains per backbone lysine unit, suggested that steric repulsion between the PEG chains that developed upon adsorption of the polymer to the nearly planar surface of a supported phospholipid bilayer (SPB) was one of the factors responsible for the destruction of the SPBs by the copolymer. Other factors included the ionic strength of the buffer used and the quality of the bilayers, pointing toward the important role defects present in the SPBs play in the decomposition process.  相似文献   

16.
J R Wu  B R Lentz 《Biochemistry》1991,30(27):6780-6787
Experiments were performed to assess three possible mechanisms of poly(ethylene glycol) (PEG) induced rapid lipid transfer between large unilamellar vesicles composed of dioleoylphosphatidylcholine: (1) transfer between aggregated vesicles, (2) transfer through an aqueous medium of lowered dielectric constant, and (3) transfer via a PEG carrier. The results showed that close contact between vesicles as a result of PEG dehydration was largely responsible for the rapid lipid transfer observed in the presence of PEG. The rate and extent of lipid transfer were also examined at 10 wt % PEG and analyzed in terms of a two-state model especially developed to account for the initial rate of lipid transfer as followed by the fluorescence lifetime of DPHpPC as a fluorescent lipid probe. Analysis revealed that two rate processes were involved in DPHpPC transfer between bilayers, both in the absence and presence of PEG. Since the maximum extent of transfer was 50%, transbilayer diffusion of DPHpPC seemed not to contribute to either process. The fast process in the presence of PEG was identified as due to rapid interbilayer monomer diffusion between closely apposed vesicles, and, in the absence of PEG, as due to monomer diffusion through the aqueous phase. The origin of the slow process, in both cases, remains obscure. The Arrhenius activation energies (and entropies) for the initial rates at temperatures from 10 to 48 degrees C were 15.3 +/- 0.3 kcal/mol (-26.3 +/- 0.2 eu) and 10.6 +/- 0.5 kcal/mol (-16.1 +/- 0.3 eu) in the absence and presence of PEG, respectively. The slow process was invariant with temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The binding of the fluorescence probe 1-anilinonaphthalene-8-sulfonate (Ans) to alpha-chymotrypsin (alpha-CHT) at pH 3.6 is accompanied by a dramatic enhancement of Ans fluorescence and a shift of the emission maximum to shorter wavelengths. Our study reveals that one Ans molecule binds to alpha-CHT at a site different from either the active site of alpha-CHT or the 2-p-toluidinylnapthalene-6-sulfonate binding site. the binding constant of Ans is about the same (10(4) M-1) at pH 3.6 and 6.4. Nanosecond fluorescence depolarization data indicate that Ans is rigidly bound to alpha-CHT. The fluorescence enhancement due to binding of Ans to alpha-CHT at low pH could be due to binding either to a hydrophobic site or to a site where local dipoles do not relax during the excited-state lifetime of Ans. As the pH is increased, fluorescence intensity of the Ans-alpha-CHT complex decreases appreciably; and the emission maximum shifts to longer wavelengths. The fluorescence decay curves exhibit a corresponding sensitivity to pH. The pH effect on the fluorescence of Ans-alpha-CHT can be interpreted in terms of a pH-dependent equilibrium between alpha-CHT conformers differing in the degree of mobility of polar residues and water molecules at the Ans binding site or structural changes in the Ans binding site.  相似文献   

18.
Fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was enhanced in the presence of maltooligosaccharides, amylose, and other α-glucans. The dependence of relative TNS fluorescence intensity per glucose unit on chain length of oligosaccharides was examined. The values of binding constant and thermodynamic parameters, assuming the 1:1 complex for TNS-amylose (number-average degree of polymerization, DPN = 17), were determined by the fluorescence titration. The values of thermodynamic parameters for 1:1 complex formation of TNS-α- and β-cyclodextrins were also determined and compared with those of TNS-amylose (DPN = 17). The fluorescence intensity of TNS in the presence of amylose (DPN = 600) decreased by the action of glucoamylase and taka-amylase A. The fluorescence of TNS-amylose (DPN = 17) system increased with the increased ionic strength. In the presence of pullulan, TNS fluorescence was also enhanced and decreased by the action of pullulanase. Amylopectin enhanced TNS fluorescence rather more strongly than amylose (DPN = 17) at the same concentration. In the presence of dextran, the fluorescence of TNS was scarcely enhanced. The degree of fluorescence enhancement of TNS in the presence of α-glucans seems to reflect the structures of α-glucans in solution, since TNS fluorescence is enhanced in the hydrophobic environment or by the disturbance of free intramolecular rotation.  相似文献   

19.
The location of ubiquinone-10 in phospholipid bilayers was analyzed using a variety of physical techniques. Specifically, we examined the hypothesis that ubiquinone localizes at the geometric center of phospholipid bilayers. Light microscopy of dipalmitoylphosphatidylcholine at room temperature in the presence of 0.05–0.5 mol fraction ubiquinone showed two separate phases, one birefringent lamellar phase and one phase that consisted of isotropic liquid droplets. The isotropic phase had a distinct yellow color, characteristic of melted ubiquinone. [13C]NMR spectroscopy of phosphatidylcholine liposomes containing added ubiquinone indicated a marked effect on the 13C-spin lattice relaxation times of the lipid hydrocarbon chain atoms near the polar head region of the bilayer, but almost no effect on those atoms nearest the center of the bilayer. X-ray diffraction experiments showed that for phosphatidylcholine bilayers, both in the gel and liquid-crystal-line phases, the presence of ubiquinone did not change either the lamellar repeat period or the wide-angle reflections from the lipid hydrocarbon chains. In electron micrographs, the hydrophobic freeze-fracture surfaces of bilayers in the rippled (Pβ′) phase were also unmodified by the presence of ubiquinone. These results indicate that the ubiquinone which does partition into the bilayer is not localized preferentially between the monolayers, and that an appreciable fraction of the ubiquinone forms a separate phase located outside the lipid bilayer.  相似文献   

20.
The location of ubiquinone-10 in phospholipid bilayers was analyzed using a variety of physical techniques. Specifically, we examined the hypothesis that ubiquinone localizes at the geometric center of phospholipid bilayers. Light microscopy of dipalmitoylphosphatidylcholine at room temperature in the presence of 0.05-0.5 mol fraction ubiquinone showed two separate phases, one birefringent lamellar phase and one phase that consisted of isotropic liquid droplets. The isotropic phase had a distinct yellow color, characteristic of melted ubiquinone. [13C]NMR spectroscopy of phosphatidylcholine liposomes containing added ubiquinone indicated a marked effect on the 13C-spin lattice relaxation times of the lipid hydrocarbon chain atoms near the polar head region of the bilayer, but almost no effect on those atoms nearest the center of the bilayer. X-ray diffraction experiments showed that for phosphatidylcholine bilayers, both in the gel and liquid-crystal-line phases, the presence of ubiquinone did not change either the lamellar repeat period or the wide-angle reflections from the lipid hydrocarbon chains. In electron micrographs, the hydrophobic freeze-fracture surfaces of bilayers in the rippled (P beta') phase were also unmodified by the presence of ubiquinone. These results indicate that the ubiquinone which does partition into the bilayer is not localized preferentially between the monolayers, and that an appreciable fraction of the ubiquinone forms a separate phase located outside the lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号