首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Na+/H+ antiporter of Bacillus alcalophilus was studied by measuring 22Na+ efflux from starved, cyanide-inhibited cells which were energized by means of a valinomycin-induced potassium diffusion potential, positive out (delta psi). In the absence of a delta psi, 22Na+ efflux at pH 9.0 was slow and appreciably inhibited by N-ethylmaleimide. Upon imposition of a delta psi, a very rapid rate of 22Na+ efflux occurred. This rapid rate of 22Na+ efflux was competitively inhibited by Li+ and varied directly with the magnitude of the delta psi. Kinetic experiments with B. alcalophilus and alkalophilic Bacillus firmus RAB indicated that the delta psi caused a pronounced increase in the Vmax for 22Na+ efflux. The Km values for Na+ were unaffected by the delta psi. Upon imposition of a delta psi at pH 7.0, a retardation of the slow 22Na+ efflux rate at pH 7.0 was caused by the delta psi. This showed that inactivity of the Na+/H+ antiporter at pH 7.0 was not secondary to a low delta psi generated by respiration at this pH. Indeed, 22Na+ efflux activity appeared to be inhibited by a relatively high internal proton concentration. By contrast, at a constant internal pH, there was little variation in the activity at external pH values from 7.0 to 9.0; at an external pH of 10.0, the rate of 22Na+ efflux declined. This decline at typical pH values for growth may be due to an insufficiency of protons when a diffusion potential rather than respiration is the driving force. Non-alkalophilic mutant strains of B. alcalophilus and B. firmus RAB exhibited a slow rate of 22Na+ efflux which was not enhanced by a delta psi at either pH 7.0 or 9.0.  相似文献   

2.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

3.
The kinetics of Na+ efflux from Escherichia coli RA 11 membrane vesicles taking place along a favorable Na+ concentration gradient are strongly dependent on the generation of an electrochemical proton gradient. An energy-dependent acceleration of the Na+ efflux rate is observed at all external pHs between 5.5 and 7.5 and is prevented by uncoupling agents. The contributions of the electrical potential (delta psi) and chemical potential (delta pH) of H+ to the mechanism of Na+ efflux acceleration have been studied by determining the effects of (a) selective dissipation of delta psi and delta pH in respiring membrane vesicles with valinomycin or nigericin and (b) imposition of outwardly directed K+ diffusion gradients (imposed delta psi, interior negative) or acetate diffusion gradients (imposed delta pH, interior alkaline). The data indicate that, at pH 6.6 and 7.5, delta pH and delta psi individually and concurrently accelerate the downhill Na+ efflux rate. At pH 5.5, the Na+ efflux rate is enhanced by delta pH only when the imposed delta pH exceeds a threshold delta pH value; moreover, an imposed delta psi which per se does not enhance the Na+ efflux rate does contribute to the acceleration of Na+ efflux when imposed simultaneously with a delta pH higher than the threshold delta pH value. The results strongly suggest that the Na+-H+ antiport mechanism catalyzes the downhill Na+ efflux.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The L-form NC7, derived from Escherichia coli K12, grew in a complex medium containing 0.2 M-CaCl2 as osmotic stabilizer, but not at pH values above 7.8. The cessation of growth at alkaline pH was not due to cell death. In complex media containing K+ or Na+, the L-form grew ove a wide pH range. Growth at alkaline pH was inhibited by 1 mM-amiloride, indicating that Na+/H+ antiport activity was required for growth at alkaline pH. The internal pH (pHi) of the L-form in media containing K+, Na+ or Ca2+ was constant at about 7.8 to 8.0 at external pH (pHo) values of 7.2 and 8.2. The rates of O2 consumption by intact cells, lactate oxidation by membrane vesicles from cells grown in Ca(2+)-containing medium, and cell division were all strongly repressed under alkaline conditions.  相似文献   

5.
This study deals with the modulation of the plasma membrane potential (delta psi p) of murine erythroleukemia (MEL) cells by cell-substratum or cell-cell contact. delta psi p was determined by measuring the distribution of tetraphenylphosphonium (TPP+) across the plasma membrane; it appeared strongly, and inversely, influenced by the two types of cell contacts. Contact with the culture surface produced a delta psi p hyperpolarization directly proportional to average distance among the ideal centers of the cells on this surface (d) within the range 10-80 microns. A detailed mathematical analysis of the function delta psi p = f(d) is presented, as well as experiments involving the use of ionophores (valinomycin and A23187) and the conditioning of the culture surface. We concluded that the d-dependent hyperpolarization (dDH) was the result of a complex interplay between the activating properties of substratum on Ca2+-dependent K+ channels (KCa) and some substratum-adherent factors that are shed by MEL cells and antagonize KCa activation (substratum-attached cellular factors = SACF). By contrast, contact of the cells with each other, obtained by incubating MEL cells at d smaller than the average cell diameter (phi = 10 microns), produced a marked delta psi p depolarization. This intercellular contact-dependent depolarization (ICDD) was unaffected by valinomycin; it was abolished by substituting Na+ in the external medium with a nondiffusible cation (choline), which shows that ICDD was sustained by Na+ influxes, probably mediated by stretch-activated (s.a.) cation channels.  相似文献   

6.
Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla   总被引:2,自引:0,他引:2  
B J Efiok  D A Webster 《Biochemistry》1990,29(19):4734-4739
Vitreoscilla is a Gram-negative bacterium with unique respiratory physiology in which Na+ was implicated as a coupling cation for the generation of a transmembrane electrical gradient (delta psi). Thus, cells respiring in the presence of 110 mM Na+ generated a delta psi of -142 mV compared to only -42 and -56 mV for Li+ and choline, respectively, and even the -42 and -56 mV were insensitive to the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (DTHB). The kinetics of delta psi formation and collapse correlated well with the kinetics of Na+ fluxes but not with those of H+ fluxes. Cyanide inhibited respiration, Na+ extrusion, and delta psi formation 81% or more, indicating that delta psi formation and Na+ extrusion were coupled to respiration. Experiments were performed to distinguish among three possible transport systems for this coupling: (1) a Na(+)-transporting ATPase; (2) an electrogenic Na+/H+ antiport system; (3) a primary Na+ pump directly driven by the free energy of electron transport. DCCD and arsenate decreased cellular ATP up to 86% but had no effect on delta psi, evidence against a Na(+)-transporting ATPase. Low concentrations of DTHB had no effect on delta psi; high concentrations transiently collapsed delta psi, but led to a stimulation of Na+ extrusion, the opposite of that expected for a Na+/H+ antiport system. Potassium ion, which collapses delta psi, also stimulated Na+ extrusion. The experimental evidence is against Na+ extrusion by mechanisms 1 and 2 and supports the existence of a respiratory-driven primary Na+ pump for generating delta psi in Vitreoscilla.  相似文献   

7.
The bacterium Vitreoscilla generates an electrical potential gradient due to sodium ion (delta psi Na+) across its membrane via respiratory-driven primary Na+ pump(s). The role of the delta psi Na+ as a driving force for ATP synthesis was, therefore, investigated. In respiring starved cells pulsed with 100 mM external Na+ [( Na+]o) there was a 167% net increase in cellular ATP concentration over basal levels compared with 0, 56, 78, and 78% for no addition, choline, Li+, and K+ controls, respectively. Doubling the [Na+]o to 200 mM boosted the net increase to 244% but a similar doubling of the choline caused only an increase to 78%. When the initial condition was intracellular Na+ ([Na+]i) = [Na+]o = 100 mM, there was a 94% net increase in cellular ATP compared with only 18 and 11% for Li+ and K+ controls, respectively, indicating that Nai+ may be the only cation tested that the cells extruded to generate the electrochemical gradient required to drive ATP synthesis. The Na(+)-dependent ATP synthesis was inhibited completely by monensin (12 microM), but only transiently by the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (100 microM), further evidence that the Na+ gradient and not a H+ gradient was driving the ATP synthesis. ATP synthesis in response to an artificially imposed H+ gradient (delta pH approximately 3) in the absence of an added cation, or in the presence of Li+, K+, or choline, yielded similar delta ATP/delta pH ratios of 0.98-1.22. In the presence of Na+, however, this ratio dropped to 0.23, indicating that Na+ inhibited H(+)-coupling to ATP synthesis and possibly that H+ and Na+ coupling to ATP synthesis share a common catalyst. The above evidence adds to previous findings that under normal growth conditions Na+ is probably the main coupling cation for ATP synthesis in Vitreoscilla.  相似文献   

8.
In previous studies, respiring Bradyrhizobium sp. strain 32H1 cells grown under 0.2% O2, conditions that derepress N2 fixation, were found to have a low proton motive force of less than -121 mV, because of a low membrane potential (delta psi). In contrast, cells grown under 21% O2, which do not fix N2, had high proton motive force values of -175 mV or more, which are typical of respiring bacteria, because of high delta psi values. In the present study, we found that a delta psi of 0 mV in respiring cells requires growth in relatively high-[K+] media (8 mM), low O2 tension, and high internal [K+]. When low-[O2], high-[K+]-grown cells were partially depleted of K+, the delta psi was high. When cells were grown under 21% O2 or in media low in K+ (50 microM K+), the delta psi was again high. The transmembrane pH gradient was affected only slightly by varying the growth or assay conditions. In addition, low-[O2], high-[K+]-grown cells had a greater proton permeability than did high-[O2]-grown cells. To explain these findings, we postulate that cells grown under conditions that derepress N2 fixation contain an electrogenic K+/H+ antiporter that is responsible for the dissipation of the delta psi. The consequence of this alteration in K+ cycling is rerouting of proton circuits so that the putative antiporter becomes the major pathway for H+ influx, rather than the H+-ATP synthase.  相似文献   

9.
Subbacterial vesicles capable of generating delta psi during NADH oxidation were obtained. The oxidation of NADH was stimulated by Na+ and inhibited by 2-heptyl-4-oxyquinoline-N-oxide (HQNO) in submicromolar concentrations. The generation of delta psi was inhibited by HQNO in low concentrations, cyanide, gramicidine D and carbonyl cyanide-m-chlorophenylhydrazone (CCCP) in combination with monensine. At the same time, in the absence of monensine CCCP influenced the delta psi generation in a much lesser degree. In subbacterial vesicles delta psi generation coupled with NADH oxidation necessitated Na+. Experiments with intact cells of V. alginolyticus revealed that cell motility depends on Na+, is sensitive to CCCP + monensine as well as to arsenate + HQNO, cyanide or anaerobiosis. In the absence of arsenate, the inhibition of respiration partly decreased the rate of bacterial movement. In the presence of HQNO and arsenate, NaCl addition to K+-loaded cells led to the monensine preventing restoration of the cell motility during a few minutes. However, no stimulating effect was observed in the case of artificial delta pH formation as a result of acidification of the medium (from pH 8.6 to pH 6.5). The experimental results suggest that delta mu Na+ generated by the respiratory chain and by the arsenate-sensitive enzymatic system (presumably, glycolysis and Na+-ATPase) can be utilized by the Na+-driven molecular motor responsible for the motility of V. alginolyticus cells.  相似文献   

10.
Sealed membrane vesicles of Acholeplasma laidlawii were obtained by controlled lysis of carotenoid-rich intact cells. An imposed delta pH was created by loading membrane vesicles or intact Acholeplasma laidlawii cells with 0.25 M NH4Cl and diluting them into 0.25 M choline chloride. The passive efflux of NH3 from the membrane vesicles or cells resulted in the creation of a delta pH (inside acid) that could be visualized by the quenching of the fluorescence of the weak base acridine orange. Whereas with isolated membrane vesicles, the fluorescence was dequenched by the addition of Na+, with intact cells, K+ in addition to Na+ was required. These results strongly suggest a Na+/H+ exchange activity that in intact Acholeplasma laidlawii cells is K+-dependent. The possible role of the Na+/H+ exchange activity in pH homeostasis at the more alkaline pH range, as well as in the extrusion of excess Na+ from the cells is discussed.  相似文献   

11.
The marine bacterium, Vibrio alginolyticus, regulates the cytoplasmic pH at about 7.8 over the pH range 6.0-9.0. By the addition of diethanolamine (a membrane-permeable amine) at pH 9.0, the internal pH was alkalized and simultaneously the cellular K+ was released. Following the K+ exit, the internal pH was acidified until 7.8, where the K+ exit leveled off. The K+ exit was mediated by a K+/H+ antiporter that is driven by the outwardly directed K+ gradient and ceases to function at the internal pH of 7.8 and below. The Na+-loaded cells assayed in the absence of KCl generated inside acidic delta pH at alkaline pH due to the function of an Na+/H+ antiporter, but the internal pH was not maintained at a constant value. At acidic pH range, the addition of KCl to the external medium was necessary for the alkalization of cell interior. These results suggested that in cooperation with the K+ uptake system and H+ pumps, the K+/H+ antiporter functions as a regulator of cytoplasmic pH to maintain a constant value of 7.8 over the pH range 6.0-9.0.  相似文献   

12.
The generation of transmembrane ion gradients by Oxalobacter formigenes cells metabolizing oxalate was studied. The magnitudes of both the transmembrane electrical potential (delta psi) and the pH gradient (internal alkaline) decreased with increasing external pH; quantitatively, the delta psi was the most important component of the proton motive force. As the extracellular pH of metabolizing cells was increased, intracellular pH increased and remained alkaline relative to the external pH, indicating that O. formigenes possesses a limited capacity to regulate internal pH. The generation of a delta psi by concentrated suspensions of O. formigenes cells was inhibited by the K+ ionophore valinomycin and the protonophore carbonyl cyanide-m-chlorophenylhydrazone, but not by the Na+ ionophore monensin. The H+ ATPase inhibitor N,N'-dicyclohexyl-carbodiimide inhibited oxalate catabolism but did not dissipate the delta psi. The results support the concept that energy from oxalate metabolism by O. formigenes is conserved not as a sodium ion gradient but rather, at least partially, as a transmembrane hydrogen ion gradient produced during the electrogenic exchange of substrate (oxalate) and product (formate) and from internal proton consumption during oxalate decarboxylation.  相似文献   

13.
The bioenergetic properties and viability of obligately alkalophilic Bacillus firmus RAB have been examined upon incubation in alkaline and neutral buffers in the presence or absence of added Na+. At pH 10.5, cells incubated in the absence of Na+ exhibited an immediate rise in cytoplasmic pH from less than 9.5 to 10.5, and they lost viability very rapidly. Viability experiments in the presence or absence of an energy source further suggested that the Na+-dependent mechanism for pH homeostasis is an energy-requiring function. The Na+/H+ antiporter, which catalyzes the vital proton accumulation at alkaline pH, was only slightly operational at pH 7.0; both whole cells and vesicles exhibited net proton extrusion even in the presence of Na+. Moreover, cells incubated in buffer at pH 7.0 were actually more viable in the presence of Na+ than in its absence. Thus, the inability of B. firmus RAB to grow at neutral pH is not due to excessive acidification of the cytoplasm. Rather, the transmembrane electrical potential, delta psi, generated at pH 7.0 was found to be much lower than at alkaline pH. The very low delta psi compromised several cell functions, e.g., Na+/solute symport and motility, which in this and other alkalophiles specifically depend upon delta psi and Na+.  相似文献   

14.
We have studied some features of K+ accumulation by glycolysing Mycoplasma mycoides var. Capri cells. We report that when Na+ is absent from the external medium, K+ accumulates up to the level predicted by the amplitude of the transmembrane electrical potential, delta psi m, measured by Rb+ and methyltriphenylphosphonium cation (TPMP+) distribution. Therefore, under these experimental conditions, the coupling mechanism of K+ uptake consists of a delta psi m-driven uniport. More important, when Na+ is present in the external medium, the level of K+ accumulation by glycolysing Mycoplasma cells is far too steep to be equilibrium with delta psi m (-120 mV for delta muK+ compared with -90mV for delta muRb+ or delta muTPMP+). Our results clearly indicate the presence in Mycoplasma of an active K+-transport system specifically stimulated by Na+. Furthermore, by controlling the amplitude of the energy-dependent delta muH+, we obtain strong evidence that this specific Na+-stimulated K+ transport is modulated by the transmembrane electrical potential. Finally, we show that ATP is consumed when such a transport system is in activity.  相似文献   

15.
The role of the plasma membrane potential (delta psi p) in the commitment to differentiation of murine erythroleukemia (MEL) cells has been studied by analyzing the ionic basis and the time course of this potential in the absence or the presence of different types of inducers. delta psi p was determined by measuring the distribution of tetraphenylphosphonium (TPP+) across the plasma membrane and displayed a 22-hour depolarization phase (from -28 to +5 mV) triggered by factors contained in foetal calf serum (FCS) and followed by a nearly symmetrical repolarization phase. After measuring the electrochemical equilibrium potential of Na+, K+, and Cl-, the relative contribution of these ions to delta psi p was evaluated by means of ion substitution experiments and by the addition of ion flux inhibitors (tetrodotoxin [TTX], 4-acetoamide-4'-isothiocyanostilbene-2,2'-disulfonate [SITS]) and ionophores (Valinomycin, A23187). The Na+ contribution to delta psi p appeared negligible, the potential being essentially generated by K+ and Cl- fluxes. When evaluated by a new mathematical approach, the effects of Valinomycin and A23187 at different times of incubation provided evidence that both the depolarization and the repolarization phase were due to variations of the K+ permeability across the plasma membrane (PK) mediated by Ca2+-activated K+ channels. All the inducers tested (dimethylsulfoxide [DMSO], hexamethylen-bis-acetamide [HMBA], diazepam), although they did not modify the ionic basis of delta psi p, strongly attenuated the depolarization rate of this potential. This attenuation was not brought about when the inducers were added to noninducible MEL cell clonal sublines. Cell commitment occurred only during the depolarization phase and increased proportionally to the attenuation of this phase up to a threshold beyond which the further increase of the attenuation was associated with the inhibition of commitment. The major role of the inducers apparently consisted of the stabilization of the Ca2+-activated K+ channels, suggesting that a properly modulated delta psi p depolarization through these channels is primarily involved in the signal generation for MEL cell commitment to differentiation.  相似文献   

16.
The marine bacterium Vibrio alginolyticus, containing 470 mM-K+ and 70 mM-Na+ inside its cells, was able to regulate the cytoplasmic pH (pH(in)) in the narrow range 7.6-7.8 over the external pH (pH(out)) range 6.0-9.0 in the presence of 400 mM-Na+ and 10 mM-K+. In the absence of external K+, however, pHin was regulated only at alkaline pH(out) values above 7.6. When the cells were incubated in the presence of unusually high K+ (400 mM) and 4 mM Na+, the pH(in) was regulated only at acidic pH(out) values below 7.6. These results could be explained by postulating a K+/H+ antiporter as the regulator of pH(in) over the pH(out) range 6.0-9.0. When Na(+)-loaded/K(+)-depleted cells were incubated in 400 mM-Na+ in the absence of K+, an inside acidic delta pH was generated at pH(out) values above 7.0. After addition of diethanolamine the inside acidic delta pH collapsed transiently and then returned to the original value concomitant with the extrusion of Na+, suggesting the participation of a Na+/H+ antiporter for the generation of an inside acidic delta pH. In the presence of 400 mM-K+, at least 5 mM-Na+ was required to support cell growth at pH(out) below 7.5. An increase in Na+ concentration allowed the cells to grow at a more alkaline pH(out). Furthermore, cells containing more Na+ inside could more easily adapt to grow at alkaline pH(out). These results indicated the importance of Na+ in acidification of the cell interior via a Na+/H+ antiporter in order to support cell growth at alkaline pH(out) under conditions where the activity of a K+/H+ antiporter is marginal.  相似文献   

17.
Transport of K+ and H+ in the anaeronically and aerobically grown bacterium Serratia marcescens has been studied. The volumes of one cell of the anaerobically and aerobically grown bacterium were 3.7 X 10(-13) cm3 and 2.4 X 10(-13) cm3, respectively. Irrespective of the growth conditions the bacteria manifested the same respiration rate. However, the values of membrane potential for the anaerobically and aerobically grown bacterium were different and equal to -130 mV and -175 mV (interior negative), respectively, in the absence of an exogenic energy source. KCN + DCCD decreases delta psi down to almost zero in both species. DCCD alone decreases delta psi partially in anaerobes and increases delta psi in aerobes, whereas KCN alone reduces delta psi partially in both species. The introduction of glucose into the medium containing K+ reduces the absolute value of delta psi to [-160] mV in aerobes and to [-20] mV in anaerobes. The effect is not observed without external K+. In the presence of arsenate a delta psi is not reduced after the addition of glucose. At pH 7.5-7.8 the ATP level in aerobes grows notably faster than in anaerobes. The H+ extrusion becomes intensified when K+ uptake is activated by the increase in external osmotic pressure. Apparent Km and Vmax for K+ accumulation are 1.2 mM and 0.4 mM.min-1.g-1. The decrease of delta psi by glucose or KCN + DCCD have no effect on the K+ uptake whereas CCCP inhibits potassium accumulation. At the same time, arsenate stabilizes the delta psi value, but blocks K+ uptake. The accumulation of K+ correlates with the potassium equilibrium potential of -200 mV calculated according to the Nernst equation, whereas the delta psi measured was not more than [-25] mV. The calculated H+/ATP stoichiometry was 3.3 for aerobes. It was assumed that a constitutive K+ pump having a K+/ATP ratio equal to 2 or 3 operates in S. marcescens membranes.  相似文献   

18.
Respiration, membrane potential generation and motility of the marine alkalotolerant Vibrio alginolyticus were studied. Subbacterial vesicles competent in NADH oxidation and delta psi generation were obtained. The rate of NADH oxidation by the vesicles was stimulated by Na+ in a fashion specifically sensitive to submicromolar HQNO (2-heptyl-4-hydroxyquinoline N-oxide) concentrations. The same amounts of HQNO completely suppressed the delta psi generation. Delta psi was also inhibited by cyanide, gramicidin D and by CCCP + monensin. CCCP (carbonyl cyanide m-chlorophenylhydrazone) added without monensin exerted a much weaker effect on delta psi. Na+ was required to couple NADH oxidation with delta psi generation. These findings are in agreement with the data of Tokuda and Unemoto on Na+-motive NADH oxidase in V. alginolyticus. Motility of V. alginolyticus cells was shown to be (i) Na+-dependent, (ii) sensitive to CCCP + monensin combination, whereas CCCP and monensin, added separately, failed to paralyze the cells, (iii) sensitive to combined treatment by HQNO, cyanide or anaerobiosis and arsenate, whereas inhibition of respiration without arsenate resulted only in a partial suppression of motility. Artificially imposed delta pNa, i.e., addition of NaCl to the K+ -loaded cells paralyzed by HQNO + arsenate, was shown to initiate motility which persisted for several minutes. Monensin completely abolished the NaCl effect. Under the same conditions, respiration-supported motility was only slightly lowered by monensin. The artificially-imposed delta pH, i.e., acidification of the medium from pH 8.6 to 6.5 failed to activate motility. It is concluded that delta mu Na+ produced by (i) the respiratory chain and (ii) an arsenate-sensitive anaerobic mechanism (presumably by glycolysis + Na+ ATPase) can be consumed by an Na+ -motor responsible for motility of V. alginolyticus.  相似文献   

19.
The effect of the plasma membrane potential delta psi p on the transport rate and steady state distribution of Li+ was assessed in rat cortical synaptosomes. Up to 15 mM Li+ failed to saturate Li+ influx into polarized synaptosomes in a Na+-based medium with 3 mM external K+. Veratridine increased and tetrodotoxin, ouabain, or high external K+ decreased the rate of Li+ influx. At steady state, Li+ was concentrated about 3-fold in resting synaptosomes at 0.3 to 1 mM Li+ externally. Subsequent depolarization of the plasma membrane by veratridine or high external K+ induced an immediate release of Li+. When graded depolarizations were imposed onto the plasma membrane by varying concentrations of ouabain, veratridine, or external K+, steady state distribution of Li+ was linearly related with K+ distribution or electrochemical activity coefficients. It was concluded that uptake rate and steady state distribution of Li+ depend significantly on delta psi p. However, Li+ gradients were lower than predicted from delta psi p, suggesting that (secondary) active transport systems counteracted passive equilibration by uphill extrusion of Li+. The electrochemical potential difference delta mu Li+ maintained at a delta psi p of -72 mV was calculated to 4.2 kJ/mol of Li+. At physiological external K+, Li+ was not actively transported by the sodium pump. The ouabain sensitivity resulted from the coupling of Li+ uptake to the pump-dependent K+ diffusion potential. In low K+ and K+-free media, however, active transport of Li+ by the sodium pump contributed to total uptake. In the absence of K+, Li+ substituted for K+ in generating a delta psi p of -64 mV maximally, as calculated from TPMP+ distribution at 40 mM external Li+. Since Li+ gradients were far too low to account for a diffusion potential, it was assumed that Li+ gave rise to an electrogenic pump potential.  相似文献   

20.
Generation of electric (delta psi) and chemical (delta pH) components of electrochemical proton gradient delta muH+, in plasma membrane vesicles of Heracleum sosnovskyi phloem cells was investigated. ATP-dependent generation of delta psi at pH 6.0 in the presence of Mg2+ and K+ was established with the help of fluorescent probes AU+ and ANS-. Protonophore CCCP and proton ATPase inhibitor DCCD suppressed generation, whereas oligomycin, the inhibitor of mitochondrial ATPases did not affect it. Measurings of delta psi value indicated its oscillations within the limits from 10 to 60 mV. ATP-dependent generation of delta pH was established by means of fluorescent probe 9-AA. The effect was eliminated by CCCP and stimulated by K+, that may testify to the transformation of a part of delta psi into delta pH at antiport H+/K+. Existence of H+-ATPase in the plasma membranes of higher plant cells insuring generation of delta muH+ is supposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号