首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chibale K 《IUBMB life》2002,53(4-5):249-252
Genetic and biochemical approaches to studies of drug resistance mechanisms in Plasmodium falciparum have raised controversies and contradictions over the past several years. A different and novel chemical approach to this important problem is desirable at this point in time. Recently, the molecular basis of drug resistance in P. falciparum has been associated with mutations in the resistance genes, Chloroquine Resistance Transporter (PfCRT) and the P-glycoprotein homologue (Pgh1). Although not the determinant of chloroquine resistance in P. falciparum, mutations in Pgh1 have important implications for resistance to other antimalarial drugs. Because it is mutations in the aforementioned resistance genes rather than overexpression that has been associated with drug resistance in malaria, studies on mechanisms of drug resistance and its reversal by chemosensitisers should benefit from a chemical approach. Target-oriented organic synthesis of chemosensitisers against proteins implicated in drug resistance in malaria should shed light on mechanism of drug resistance and its reversal in this area. The effect of structurally diverse chemosensitisers should be examined on several putative resistance genes in P. falciparum to deal with antimalarial drug resistance in the broadest sense. Therefore, generating random mutations of these resistance proteins and subsequent screening in search of a specific phenotype followed by a search for mutations and/or chemosensitisers that affect a specific drug resistance pathway might be a viable strategy. This diversity-oriented organic synthesis approach should offer the means to simultaneously identify resistance proteins that can serve as targets for therapeutic intervention (therapeutic target validation) and chemosensitisers that modulate the functions of these proteins (chemical target validation).  相似文献   

2.
Plasmodium falciparum drug resistance is a major problem in malaria endemic areas. Molecular markers and in vitro tests have been developed to study and monitor drug resistance. However, none, used alone, can provide sufficient data concerning the level of drug resistance and to issue precise guidelines for drug use policies in endemic areas. We propose real-time PCR for the simultaneous detection of pfcrt and pfmdr1 genes mutations and to determine the half-maximal inhibitory response (IC(50)) of antimalarial drug. Using hybridization probes and SybrGreen technology on LightCycler instrument, point mutations of pfcrt and pfmdr1 genes have been successfully detected in 161 human blood samples and determination of IC values was applied to chloroquine-sensitive and chloroquine-resistant strains. Moreover, mixed infections caused by P. falciparum clones with wild-type or mutant alleles could be efficiency separated. The aim of this study was not to provide definitive data concerning the rate of mutations in an endemic area, but to describe a powerful method allowing the quantification of DNA for IC(50) determination and the detection of major pfmdr1 and pfcrt mutations.  相似文献   

3.
Resistance to dihydro folate reductase inhibitors and resistance to chloroquine have been mapped to single genetic loci in Plasmodium falciparum. Specific point mutations in the dihydro folate reductase gene confer different degrees of resistance to two dihydro folate inhibitors, cycloguanil and pyrimethamine, depending on the positions of the mutations and the residues involved. The chloroquine resistance locus has been mapped to a 400 kilobase (kb) segment of chromosome 7 in a P. falciparum cross. Identification and characterization of genes within this segment should lead to an understanding of the rapid drug efflux mechanism responsible for chloroquine resistance.  相似文献   

4.
The emergence of drug-resistant strains of Mycobacterium tuberculosis is a serious public health problem. Many of the specific gene mutations that cause drug resistance in M. tuberculosis are point mutations. We are developing a PCR-peptide nucleic acid (PNA)-based ELISA as a diagnostic method to recognize point mutations in genes associated with isoniazid and rifampin resistance in M. tuberculosis. Specific point mutation-containing sequences and wild-type sequences of cloned mycobacterial genes were PCR-amplified, denatured, and hybridized with PNA probes bound to microplate wells. Using 15-base PNA probes, we established the hybridization temperatures (50 degrees C-55 degrees C) and other experimental conditions suitable for detecting clinically relevant point mutations in the katG and rpoB genes. Hybridization of PCR-amplified sequences that contained these point mutations with complementary mutation-specific PNAs resulted in significant increases in ELISA response compared with hybridization using wild-type-specific PNAs. Conversely, PCR-amplified wild-type sequences hybridized much more efficiently with wild-type PNAs than with the mutation-specific PNAs. Using the M. tuberculosis cloned genes and PCR-PNA-ELISA format developed here, M. tuberculosis sequences containing point mutations associated with drug resistance can be identified in less than 24 h.  相似文献   

5.
A three-dimensional (3-D) model of dihydrofolate reductase (DHFR) from Plasmodium falciparum has been constructed by homology building. The model building has been based on a structural alignment of five X-ray structures of DHFR from different species. The 3-D model of the plasmodial DHFR was obtained by amino acid substitution in the human DHFR, which was chosen as template, modification of four loops (two insertions, two deletions) and subsequent energy minimization. The active site of P. falciparum DHFR was analyzed and compared to human DHFR with respect to sequence variations and structural differences. Based on this analysis the molecular consequences of point mutations known to be involved in drug resistance were discussed. The significance of the most important point mutation causing resistance, S108N, could be explained by the model, whereas the point mutations associated with enhanced resistance, N51I and C59R, seem to have a more indirect effect on inhibitor binding.  相似文献   

6.
Several genes of Plasmodium falciparum are positively selected due to the pressure from the host immune system. This is a pattern completely opposite to that found in most housekeeping genes, which have few synonymous mutations. The discrepancy is an important topic in Plasmodium biology. We searched for unique polymorphism patterns in P. falciparum and identified a repetitive Stuttering motif in PFI1780w which was recently grouped as a gene in the PHIST family. The repeat has a position-specific polymorphism pattern in the otherwise highly conserved gene. Its mutations are limited to only one small region, and they are not consistent with replication slippage or gene conversion commonly found in low complexity regions. The repeat variation was analyzed in different strains of P. falciparum. The PFI1780w Stuttering motif can be a model to study gene diversification and used as a tool for strain typing.  相似文献   

7.
Several tumour types are sensitive to deactivation of just one or very few genes that are constantly active in the cancer cells, a phenomenon that is termed ‘oncogene addiction’. Drugs that target the products of those oncogenes can yield a temporary relief, and even complete remission. Unfortunately, many patients receiving oncogene-targeted therapies relapse on treatment. This often happens due to somatic mutations in the oncogene (‘resistance mutations’). ‘Compound mutations’, which in the context of cancer drug resistance are defined as two or more mutations of the drug target in the same clone may lead to enhanced resistance against the most selective inhibitors. Here, it is shown that the vast majority of the resistance mutations occurring in cancer patients treated with tyrosin kinase inhibitors aimed at three different proteins follow an evolutionary pathway. Using bioinformatic analysis tools, it is found that the drug-resistance mutations in the tyrosine kinase domains of Abl1, ALK and exons 20 and 21 of EGFR favour transformations to residues that can be identified in similar positions in evolutionary related proteins. The results demonstrate that evolutionary pressure shapes the mutational landscape in the case of drug-resistance somatic mutations. The constraints on the mutational landscape suggest that it may be possible to counter single drug-resistance point mutations. The observation of relatively many resistance mutations in Abl1, but not in the other genes, is explained by the fact that mutations in Abl1 tend to be biochemically conservative, whereas mutations in EGFR and ALK tend to be radical. Analysis of Abl1 compound mutations suggests that such mutations are more prevalent than hitherto reported and may be more difficult to counter. This supports the notion that such mutations may provide an escape route for targeted cancer drug resistance.  相似文献   

8.
Chloroquine resistance (CQR) in Plasmodium falciparum is associated with mutations in the digestive vacuole transmembrane protein PfCRT. However, the contribution of individual pfcrt mutations has not been clarified and other genes have been postulated to play a substantial role. Using allelic exchange, we show that removal of the single PfCRT amino-acid change K76T from resistant strains leads to wild-type levels of CQ susceptibility, increased binding of CQ to its target ferriprotoporphyrin IX in the digestive vacuole and loss of verapamil reversibility of CQ and quinine resistance. Our data also indicate that PfCRT mutations preceding residue 76 modulate the degree of verapamil reversibility in CQ-resistant lines. The K76T mutation accounts for earlier observations that CQR can be overcome by subtly altering the CQ side-chain length. Together, these findings establish PfCRT K76T as a critical component of CQR and suggest that CQ access to ferriprotoporphyrin IX is determined by drug-protein interactions involving this mutant residue.  相似文献   

9.
Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids.  相似文献   

10.
The nematode, Caenorhabditis elegans, can be mutated to resistance to the Cry5B toxin of Bacillus thuringiensis. By cloning and characterization of these C. elegans resistance genes, we have determined that a major mechanism by which C. elegans resists Cry5B is by loss of function mutations in any one of four gylcosyltransferase genes that glycosylate glycolipids specific to arthropods. Without correct gylcosylation, binding of Cry5B is greatly impaired in C. elegans. That these specific arthroseries glycolipids do not occur in vertebrates potentially helps explain why Cry toxins are specific for arthropods.  相似文献   

11.
Resistance of Plasmodium falciparum to the antimalarial drug sulfadoxine-pyrimethamine is a result of extremely rare mutations that have spread over large geographical areas. This pattern was completely unexpected because mutations encoding resistance occur commonly in laboratory conditions, leading to the expectation that resistance would originate locally on numerous occasions. This can be reconciled with basic P. falciparum biology and epidemiology, and it is concluded that this pattern of extremely rare mutations and subsequent spread should be regarded as the most likely pattern of resistance to future antimalarials. Consequently, strategies to slow the spread of resistance need to be designed on regional, rather than national, considerations.  相似文献   

12.
Resistance to antifolates of the malaria parasite Plasmodium falciparum stems from stepwise mutations of the target enzyme dihydrofolate reductase (DHFR). New drugs can be developed against resistant parasites, which are assumed to have limited possibilities in mutations. Mechanisms of resistance other than reduced binding of inhibitors to mutant enzymes may be possible and need to be further explored. New synergistic combinations of drugs targeting DHFR and dihydropteroate synthase may be employed, with new provisions against development of resistance.  相似文献   

13.
ras proto-oncogenes are activated by point mutation in a wide variety of human and animal tumors, making ras gene analysis a major area of clinical and basic cancer research. Activating point mutations, in each of the three ras genes (Ha-, Ki-, or N-ras), usually occur in one of three specific codons (12, 13, or 61). Thus, an adequate assessment of activating ras gene mutations should include the analysis of at least nine codons. We have developed a rapid method for point mutation analysis of the ras genes, which involves simultaneous (multiplex) PCR amplification of all three homologous ras genes (in the regions surrounding codons 12-13 and codon 61) in a single reaction starting with only 1 microgram of genomic DNA. Although multiplex PCR has been previously used for unrelated sequences, we demonstrate here that multiplex PCR can also be used for highly homologous sequences. Importantly, after coamplification, each of the homologous ras genes can be individually and specifically sequenced even though the other two closely related genes are present in the same template mixture, by using high-stringency conditions permitted by Taq DNA polymerase. An automated multicycle DNA sequencing procedure is used to allow the double-stranded PCR products to be sequenced directly without the need to generate single-stranded templates, further simplifying the protocol. Our multiplex PCR amplification and direct DNA sequencing procedures should greatly facilitate more complete analyses of activating ras gene point mutations, particularly in studies involving many tumor samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Eukaryotic translation initiation factors (eIFs) play a central role in potyviral infection. Accordingly, mutations in the gene encoding eIF4E have been identified as a source of recessive resistance in several plant species. In common bean, Phaseolus vulgaris , four recessive genes, bc-1 , bc-2 , bc-3 and bc-u , have been proposed to control resistance to the potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus . In order to identify molecular entities for these genes, we cloned and sequenced P. vulgaris homologues of genes encoding the eIF proteins eIF4E, eIF(iso)4E and nCBP. Bean genotypes reported to carry bc-3 resistance were found specifically to carry non-silent mutations at codons 53, 65, 76 and 111 in eIF4E . This set of mutations closely resembled a pattern of eIF4E mutations determining potyvirus resistance in other plant species. The segregation of BCMV resistance and eIF4E genotype was subsequently analysed in an F2 population derived from the P. vulgaris all-susceptible genotype and a genotype carrying bc-3 . F2 plants homozygous for the eIF4E mutant allele were found to display at least the same level of resistance to BCMV as the parental resistant genotype. At 6 weeks after inoculation, all F2 plants found to be BCMV negative by enzyme-linked immunosorbent assay were found to be homozygous for the mutant eIF4E allele. In F3 plants homozygous for the mutated allele, virus resistance was subsequently found to be stably maintained. In conclusion, allelic eIF4E appears to be associated with a major component of potyvirus resistance present in bc-3 genotypes of bean.  相似文献   

15.
The emergence and spread of multidrug resistant Plasmodium falciparum has severely limited the therapeutic options for the treatment of malaria. With ever-increasing failure rates associated with chloroquine or sulphadoxine-pyrimethamine treatment, attention has turned to the few alternatives, which include quinine and mefloquine. Here, we have investigated the role of pfmdr1 3' coding region point mutations in antimalarial drug susceptibility by allelic exchange in the GC03 and 3BA6 parasite lines. Results with pfmdr1-recombinant clones indicate a significant role for the N1042D mutation in contributing to resistance to quinine and its diastereomer quinidine. The triple mutations S1034C/N1042D/D1246Y, highly prevalent in South America, were also found to enhance parasite susceptibility to mefloquine, halofantrine and artemisinin. pfmdr1 3' mutations showed minimal effect on P. falciparum resistance to chloroquine or its metabolite mono-desethylchloroquine in these parasite lines, in contrast to previously published results obtained with 7G8 parasites. This study supports the hypothesis that pfmdr1 3' point mutations can significantly affect parasite susceptibility to a wide range of antimalarials in a strain-specific manner that depends on the parasite genetic background.  相似文献   

16.
The coding sequence of the bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from a moderately pyrimethamine-resistant strain (HB3) of Plasmodium falciparum was assembled in a pUC expression vector. The coding sequence possesses unique Nco1 and Xba1 sites which flank 243 bp of the DHFR gene that include all point mutations thus far linked to pyrimethamine resistance. Wild-type (3D7) and highly pyrimethamine-resistant (7G8) TS-DHFRs were made from this vector by cassette mutagenesis using Nco1-Xba1 fragments from the corresponding cloned TS-DHFR genes. Catalytically active recombinant TS-DHFRs were expressed in Escherichia coli, albeit at low levels. Both TS and DHFR coeluted upon gel filtration and copurified upon affinity and anion exchange chromatography. Gel filtration and SDS-PAGE indicated that the enzyme was a dimer with identical 67-kDa subunits, characteristic of protozoan TS-DHFRs. Amino-terminal sequencing gave 10 amino acids which perfectly matched the sequence predicted from the nucleotide sequence. The recombinant TS-DHFR was purified to homogeneity by 10-formylfolate affinity chromatography followed by Mono Q FPLC. The inhibition properties of pyrimethamine toward the purified recombinant enzymes show that the point mutations are the molecular basis of pyrimethamine resistance in P. falciparum.  相似文献   

17.
Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach.  相似文献   

18.
19.
[目的]为了实现对大肠杆菌靶基因的点突变,本研究将同源重组系统与CRISPR-Cas9技术相结合,探索一种高效、简捷的两步法策略.[方法]将靶基因的上下游同源臂和标记基因(amp)与pKOV质粒连接,获得pKOV-HR重组质粒.将pKOV-HR转化至大肠杆菌,借助其自身RecA重组系统,介导DNA发生同源重组,获得靶基...  相似文献   

20.
用干血纸片扩增人雄激素受体基因   总被引:1,自引:0,他引:1  
雄激素不敏感综合征(AIS)为一类主要与雄激素受体(AR)基因缺陷密切相关的X-连锁隐性遗传病.为进一步阐明AIS的发病机制,建立了用干血纸片直接PCR扩增或将干血纸片中的血细胞洗脱裂解后进行PCR扩增雄激素受体(AR)基因的方法,结合已建立的SSCP分析及DNA直接测序等方法,可对AR基因进行突变分析.干血纸片取样及保存容易,便于邮寄,适用于外地,特别是边远地区患者的取样.该法不仅为AIS患者的AR基因突变分析和家系调查提供简便易行的方法,也适用于PCR基础上的其他各种基因的突变分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号