首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 852 毫秒
1.
Celiac disease is caused by inflammatory, gluten specific T cell responses in the small intestine. Invariably such responses are HLA-DQ2 or HLA-DQ8 restricted, providing an explanation for the strong association between celiac disease and these HLA-class II alleles. It is now clear that some native gluten sequences can bind to HLA-DQ2/8 and induce T cell responses. In addition, modification of gluten peptides by the enzyme tissue transglutaminase results in high affinity HLA-DQ2/8 binding peptides that can induce T cell responses. Thus, gluten molecules contain a large number of immunogenic peptides and this is likely to play an important role in the breaking of oral tolerance to gluten.  相似文献   

2.

Background

Celiac disease is a T-cell mediated chronic inflammatory disorder of the gut that is induced by dietary exposure to gluten proteins. CD4+ T cells of the intestinal lesion recognize gluten peptides in the context of HLA-DQ2.5 or HLA-DQ8 and the gluten derived peptides become better T-cell antigens after deamidation catalyzed by the enzyme transglutaminase 2 (TG2). In this study we aimed to identify the preferred peptide substrates of TG2 in a heterogeneous proteolytic digest of whole wheat gluten.

Methods

A method was established to enrich for preferred TG2 substrates in a complex gluten peptide mixture by tagging with 5-biotinamido-pentylamine. Tagged peptides were isolated and then identified by nano-liquid chromatography online-coupled to tandem mass spectrometry, database searching and final manual data validation.

Results

We identified 31 different peptides as preferred substrates of TG2. Strikingly, the majority of these peptides were harboring known gluten T-cell epitopes. Five TG2 peptide substrates that were predicted to bind to HLA-DQ2.5 did not contain previously characterized sequences of T-cell epitopes. Two of these peptides elicited T-cell responses when tested for recognition by intestinal T-cell lines of celiac disease patients, and thus they contain novel candidate T-cell epitopes. We also found that the intact 9mer core sequences of the respective epitopes were not present in all peptide substrates. Interestingly, those epitopes that were represented by intact forms were frequently recognized by T cells in celiac disease patients, whereas those that were present in truncated versions were infrequently recognized.

Conclusion

TG2 as well as gastrointestinal proteolysis play important roles in the selection of gluten T-cell epitopes in celiac disease.  相似文献   

3.
Celiac disease is an HLA-DQ2-associated disorder characterized by intestinal T cell responses to ingested wheat gluten proteins. A peptide fragment of 33 residues (alpha(2)-gliadin 56-88) produced by normal gastrointestinal proteolysis contains six partly overlapping copies of three T cell epitopes and is a remarkably potent T cell stimulator after deamidation by tissue transglutaminase (TG2). This 33-mer is rich in proline residues and adopts the type II polyproline helical conformation in solution. In this study we report that after deamidation, the 33-mer bound with higher affinity to DQ2 compared with other monovalent peptides harboring gliadin epitopes. We found that the TG2-treated 33-mer was presented equally effectively by live and glutaraldehyde-fixed, EBV-transformed B cells. The TG2-treated 33-mer was also effectively presented by glutaraldehyde-fixed dendritic cells, albeit live dendritic cells were the most effective APCs. A strikingly increased T cell stimulatory potency of the 33-mer compared with a 12-mer peptide was also seen with fixed APCs. The 33-mer showed binding maximum to DQ2 at pH 6.3, higher than maxima found for other high affinity DQ2 binders. The 33-mer is thus a potent T cell stimulator that does not require further processing within APC for T cell presentation and that binds to DQ2 with a pH profile that promotes extracellular binding.  相似文献   

4.
Celiac disease is an HLA-DQ2-associated disorder characterized by an intestinal T cell response. The disease-relevant T cells secrete IFN-gamma upon recognition of gluten peptides that have been deamidated in vivo by the enzyme tissue transglutaminase (transglutaminase 2 (TG2)). The celiac intestinal mucosa contains elevated numbers of mast cells, and increased histamine secretion has been reported in celiac patients. This appears paradoxical because histamine typically biases T cell responses in the direction of Th2 instead of the Th1 pattern seen in the celiac lesions. We report that histamine is an excellent substrate for TG2, and it can be efficiently conjugated to gluten peptides through TG2-mediated transamidation. Histamine-peptide conjugates do not exert agonistic effects on histamine receptors, and scavenging of biologically active histamine by gluten peptide conjugation can have physiological implications and may contribute to the mucosal IFN-gamma response in active disease. Interestingly, TG2 is able to hydrolyze the peptide-histamine conjugates when the concentrations of substrates are lowered, thereby releasing deamidated gluten peptides that are stimulatory to T cells.  相似文献   

5.
Celiac disease (CeD) is a human leukocyte antigen (HLA)-linked autoimmune-like disorder that is triggered by the ingestion of gluten or related storage proteins. The majority of CeD patients are HLA-DQ2.5+, with the remainder being either HLA-DQ8+ or HLA-DQ2.2+. Structural studies have shown how deamidation of gluten epitopes engenders binding to HLA-DQ2.5/8, which then triggers an aberrant CD4+ T cell response. HLA tetramer studies, combined with structural investigations, have demonstrated that repeated patterns of TCR usage underpins the immune response to some HLADQ2.5/8 restricted gluten epitopes, with distinct TCR motifs representing common landing pads atop the HLA–gluten complexes. Structural studies have provided insight into TCR specificity and cross-reactivity towards gluten epitopes, as well as cross-reactivity to bacterial homologues of gluten epitopes, suggesting that environmental factors may directly play a role in CeD pathogenesis. Collectively, structural immunology-based studies in the CeD axis may lead to new therapeutics/diagnostics to treat CeD, and also serve as an exemplar for other T cell mediated autoimmune diseases.  相似文献   

6.
In the small intestine of celiac disease patients, dietary wheat gluten and similar proteins in barley and rye trigger an inflammatory response. While strict adherence to a gluten-free diet induces full recovery in most patients, a small percentage of patients fail to recover. In a subset of these refractory celiac disease patients, an (aberrant) oligoclonal intraepithelial lymphocyte population develops into overt lymphoma. Celiac disease is strongly associated with HLA-DQ2 and/or HLA-DQ8, as both genotypes predispose for disease development. This association can be explained by the fact that gluten peptides can be presented in HLA-DQ2 and HLA-DQ8 molecules on antigen presenting cells. Gluten-specific CD4+ T cells in the lamina propria respond to these peptides, and this likely enhances cytotoxicity of intraepithelial lymphocytes against the intestinal epithelium. We propose a threshold model for the development of celiac disease, in which the efficiency of gluten presentation to CD4+ T cells determines the likelihood of developing celiac disease and its complications. Key factors that influence the efficiency of gluten presentation include: (1) the level of gluten intake, (2) the enzyme tissue transglutaminase 2 which modifies gluten into high affinity binding peptides for HLA-DQ2 and HLA-DQ8, (3) the HLA-DQ type, as HLA-DQ2 binds a wider range of gluten peptides than HLA-DQ8, (4) the gene dose of HLA-DQ2 and HLA-DQ8, and finally,(5) additional genetic polymorphisms that may influence T cell reactivity. This threshold model might also help to understand the development of refractory celiac disease and lymphoma.  相似文献   

7.
Tissue transglutaminase (TG2) can modify proteins by transamidation or deamidation of specific glutamine residues. TG2 has a major role in the pathogenesis of celiac disease as it is both the target of disease-specific autoantibodies and generates deamidated gliadin peptides that are recognized by CD4(+), DQ2-restricted T cells from the celiac lesions. Capillary electrophoresis with fluorescence-labeled gliadin peptides was used to separate and quantify deamidated and transamidated products. In a competition assay, the affinity of TG2 to a set of overlapping gamma-gliadin peptides was measured and compared with their recognition by celiac lesion T cells. Peptides differed considerably in their competition efficiency. Those peptides recognized by intestinal T cell lines showed marked competition indicating them as excellent substrates for TG2. The enzyme fine specificity of TG2 was characterized by synthetic peptide libraries and mass spectrometry. Residues in positions -1, +1, +2, and +3 relative to the targeted glutamine residue influenced the enzyme activity, and proline in position +2 had a particularly positive effect. The characterized sequence specificity of TG2 explained the variation between peptides as TG2 substrates indicating that the enzyme is involved in the selection of gluten T cell epitopes. The enzyme is mainly localized extracellularly in the small intestine where primary amines as substrates for the competing transamidation reaction are present. The deamidation could possibly take place in this compartment as an excess of primary amines did not completely inhibit deamidation of gluten peptides at pH 7.3. However, lowering of the pH decreased the reaction rate of the TG2-catalyzed transamidation, whereas the rate of the deamidation reaction was considerably increased. This suggests that the deamidation of gluten peptides by TG2 more likely takes place in slightly acidic environments.  相似文献   

8.
The envelope glycoprotein of HIV gp120 is a T cell Ag in experimental animals and in humans infected with HIV or deliberately immunized with gp120 in various forms. Inasmuch as T cell responses result from the interaction of Ag processed and presented by APC with the unprimed T cell repertoire, we have investigated the human T cell repertoire specific for gp120 in seronegative, normal individuals. T cell lines and clones specific for HIV gp120 were generated by repeated in vitro stimulation of peripheral blood T lymphocytes with gp120-pulsed APC, followed by IL-2 expansion. We observed that the T cell response to whole gp120 involved single restricted immunodominant epitopes in gp120 that differ between responding individuals. Focusing of the response to limited regions of gp120 when the whole Ag is used for priming suggests that one or more adjacent epitopes are immunodominant and mask responses to "immunorecessive" epitopes. We have been able to generate primary in vitro responses to recessive epitopes by stimulation in vitro with synthetic peptides of gp120. The results indicate that a much broader T repertoire can be detected when individual peptides are used for priming in vitro rather than gp120. This information has important implications for the development of vaccination protocols aimed at eliciting diverse immune responses to "immunorecessive" regions of envelope glycoprotein.  相似文献   

9.
Celiac Sprue, or gluten-sensitive enteropathy, is an inheritable human disease of the small intestine that is triggered by the dietary intake of gluten. Recently, several Pro- and Gln-rich peptide sequences (most notably PQPQLPY and analogs) have been identified from gluten with potent immunogenic activity toward CD4(+) T cells from small intestinal biopsies of Celiac Sprue patients. These peptides have three unusual properties. First, they are relatively stable toward further proteolysis by gastric, pancreatic, and intestinal enzymes. Second, they are recognized and deamidated by human tissue transglutaminase (tTGase) with high selectivity. Third, tTGase-catalyzed deamidation enhances their affinity for HLA-DQ2, the disease-specific class II major histocompatibility complex heterodimer. In an attempt to seek a mechanistic explanation for these properties, we undertook secondary structural studies on PQPQLPY and its analogs. Circular dichroism studies on a series of monomeric and dimeric analogs revealed a strong polyproline II helical propensity in a subset of them. Two-dimensional nuclear magnetic resonance spectroscopic analysis confirmed a polyproline II conformation of PQPQLPY, and was also used to elucidate the secondary structure of the most helical variant, (D-P)QPQLPY. Remarkably, a strong correlation was observed between polyproline II content of naturally occurring gluten peptides and the specificity of human tTGase toward these substrates. Analogs with up to two D-amino acid residues retained both polyproline II helical content and transglutaminase affinity. Since the Michaelis constant (K(m)) is the principal determinant of tTGase specificity for naturally occurring gluten peptides and their analogs, our results suggest that the tTGase binding site may have a preference for polyproline II helical substrates. If so, these insights could be exploited for the design of selective small molecule inhibitors of this pharmacologically important enzyme.  相似文献   

10.
Activation of small intestinal gluten-reactive CD4+ T cells is a critical event in celiac disease. Such cells predominantly recognise gluten peptides in which specific glutamines are deamidated. Deamidation may be catalysed by intestinal tissue transglutaminase (TG2), a protein which is also the main autoantigen in celiac disease. Our aim was to study how the two main catalytic activities of transglutaminase--deamidation and transamidation (cross-linking) of an immunodominant gliadin epitope--are influenced by the presence of acceptor amines in the intestinal mucosa, and thereby contribute to further elucidation of the pathogenetic mechanisms in celiac disease. We prepared monoclonal antibodies, reacting specifically with the non-deamidated epitope QPFPQPQLPYPQPQ-amide and/or the deamidated epitope QPFPQPELPYPQPQ-amide. A solid phase immunoassay combined with gel filtration chromatography was used to analyse deamidation and cross-linking of these peptides to proteins. Our results show that QPFPQPQLPYPQPQ-amide was deamidated when incubated with purified TG2, with fresh mucosal sheets and with mucosal homogenates. Of other transglutaminases tested, only Streptoverticillium transglutaminase was able to generate the deamidated epitope. A fraction of the non-deamidated epitope was cross-linked to proteins, including TG2. The results suggest that intestinal TG2 is responsible for generation of the active deamidated epitope. As the epitope often occurs in a repeat structure, the result may be cross-linking of a deamidated, i.e., activated cell epitope. Alternatively, the deamidation may occur by reversal of the cross-linking reaction. The results provide a basis for the suggestion that binding of a peptide to a protein, in connection to its modification to a T cell epitope, might be a general explanation for the role of TG2 in celiac disease and a possible mechanism for the generation of autoantigens.  相似文献   

11.
Celiac disease (CD) is a complex inflammatory disorder of the small intestine, induced by dietary gluten in genetically susceptible individuals. CD is strongly associated with HLA-DQ2 and it has recently been established that gut-derived DQ2-restricted T cells from patients with CD predominantly recognize gluten-derived peptides in which specific glutamine residues are deamidated to glutamic acid by tissue transglutaminase. Recently, intestinally expressed human genes with high homology to DQ2-gliadin celiac T-cell epitopes have been identified. Single or double point mutations which would increase the celiac T-cell epitope homology, and mutation in these genes, leading to the expression of glutamic acid at particular positions, could hypothetically be involved in the initiation of CD in HLA-DQ2-positive children. Six gene regions with high celiac T-cell epitope homology were investigated for single-nucleotide polymorphisms using direct sequencing of DNA from 20 CD patients, 27 type 1 diabetes mellitus (T1DM) patients with associated CD, 24 patients with T1DM without CD and 110 healthy controls, all of Caucasian origin. No variants in any of these genes in any of the investigated groups were found. We conclude that gut-expressed human celiac epitope homologous peptides are unlikely to represent non-HLA risk factors in the development of celiac disease in Caucasians.  相似文献   

12.
An aluminium hydroxide adjuvant induced a more elevated and rapid immune responses against short peptides conjugated to the Keyhole Lympet Hemocyanin carrier than immuneasy adjuvant. Furthermore, since carrier proteins may compete with the fused or chemically linked polypeptides in eliciting antigen-specific immune response, we classified the immunogenicity of the most common carrier proteins used in molecular biology for antigen expression and mouse immunisation. The disulfide isomerase protein A gave a carrier with the lowest immunogenicity whilst disulfide isomerase protein C gave the highest immunogenicity and therefore should be avoided as a fusion partner. Using this protein as a model, we identified and located the immunodominant epitopes along its sequence. These results now enable the combination of carrier and immunisation conditions to be optimized.  相似文献   

13.
A baculovirus-produced recombinant CEA (rCEA) protein comprising the extracellular region was used for vaccination of CRC patients with or without GM-CSF as an adjuvant cytokine. Ten patients with a significant proliferative T cell response against rCEA were selected for T cell epitope mapping. Fifteen-aa-long overlapping peptides covering the entire aa sequence of the external domain of CEA were used in a proliferation assay. In six of the patients a repeatable T cell response against at least one peptide was demonstrated. For the first time, nine functional HLA-DR epitopes of CEA were defined. Two of the peptides were recognized by more than one patient, i.e., two and three patients, respectively. Those 15-mer peptides that induced a proliferative T cell response fitted to the actual HLA-DR type (SYFPEITHI). The affinity of the native peptides for the T cell receptor was in the low to intermediate range (scores 6–19). The 15-mer peptides also contained 9-mer peptide sequences that could be predicted to bind to the actual HLA-ABC genotypes (SYFPEITHI/BIMAS). Blocking experiments using monoclonal antibodies indicated that the proliferative T cell response was both MHC class I and II restricted. The defined HLA-DR T cell epitopes were spread over the entire CEA molecule, but a higher frequency was noted towards the C-terminal. Peptides with a dual specificity may form a basis for production of subunit cancer vaccines, but modifications should be done to increase the T cell affinity, thereby optimizing the antitumoral effects of the vaccine.Abbreviations aa amino acid - CRC colorectal carcinoma - GM-CSF granulocyte/monocyte colony stimulating factor - CEA carcino-embryonic antigen - BCP baculovirus control protein - MHC major histocompatibility complex - pp peptide - TAA tumor associated antigen  相似文献   

14.
Coeliac disease is the most common disorder with malabsorption of the small instestine, caused by the gluten fraction of cereals in genetically predisposed individuals. Gluten peptides are efficiently presented by coeliac disease-specific HLA-DQ2- and HLA-DQ8-positive antigen-presenting cells, and thus drive the antigen-presenting cells, predominantly in the connective tissue of the lamina propria. The studying of the recently explored autoantibodies against tissue transglutaminase brought us further in the understanding of the pathophysiology of coeliac disease. The spreading of reliable serologic methods modified our knowledge on the clinical picture and prevalence of the disease. Long-standing untreated coeliac disease, even if clinically silent, predisposes for other autoimmune diseases. Therefore, population screening for immunoglobulin A antibodies to tissue transglutaminase seems justified.  相似文献   

15.
Celiac disease is an enteropathy caused by intolerance to dietary gluten. The disorder is strongly associated with DQA1*0501/DQB1*0201 (HLA-DQ2) as approximately 95% of celiac patients express this molecule. HLA-DQ2 has unique Ag-binding properties that allow it to present a diverse set of gluten peptides to gluten-reactive CD4+ T cells so instigating an inflammatory reaction. Previous work has indicated that the presence of negatively charged amino acids within gluten peptides is required for specific binding. This, however, only partly explains the scale of the interaction. We have now characterized 432 natural ligands of HLA-DQ2 representing length variants of 155 distinct sequences. The sequences were aligned and the binding cores were inferred. Analysis of the amino acid distribution of these cores demonstrated that negatively charged residues in HLA-DQ2-bound peptides are favored at virtually all positions. This contrasts with a more restricted presence of such amino acids in T cell epitopes from gluten. Yet, HLA-DQ2 was also found to display a strong preference for proline at several anchor and nonanchor positions that largely match the position of proline in gluten T cell epitopes. Consequently, the bias for proline at p6 and p8 facilitates the enzymatic conversion of glutamine into glutamic acid in gluten peptides at p4 and p6, two important anchor sites. These observations provide new insights in the unique ability of HLA-DQ2 to bind a large repertoire of glutamine- and proline-rich gluten peptides. This knowledge may be an important asset in the development of future treatment strategies.  相似文献   

16.
Two recently identified immunodominant epitopes from alpha-gliadin account for most of the stimulatory activity of dietary gluten on intestinal and peripheral T lymphocytes in patients with celiac sprue. The proteolytic kinetics of peptides containing these epitopes were analyzed in vitro using soluble proteases from bovine and porcine pancreas and brush-border membrane vesicles from adult rat intestine. We showed that these proline-glutamine-rich epitopes are exceptionally resistant to enzymatic processing. Moreover, as estimated from the residual peptide structure and confirmed by exogenous peptidase supplementation, dipeptidyl peptidase IV and dipeptidyl carboxypeptidase I were identified as the rate-limiting enzymes in the digestive breakdown of these peptides. A similar conclusion also emerged from analogous studies with brush-border membrane from a human intestinal biopsy. Supplementation of rat brush-border membrane with trace quantities of a bacterial prolyl endopeptidase led to the rapid destruction of the immunodominant epitopes in these peptides. These results suggest a possible enzyme therapy strategy for celiac sprue, for which the only current therapeutic option is strict exclusion of gluten-containing food.  相似文献   

17.
18.
In this study two synthetic peptides from the Bordetella pertussis toxin subunit S1 were conjugated to human anti-idiotypic antibodies and used as an immunogen in cancer patients to induce immunity. The aims of the present report are to explain why no carrier or adjuvant effect of the conjugated pertussis peptides could be established regarding induction of responses against the anti-idiotype and to explore the type and quality of induced anti-pertussis immune responses. The lack of carrier and adjuvant effect of the peptides might be related to the fact that the anti-idiotypic antibodies by themselves include helper epitopes and that none of the patients had a detectable T cell response against any of the selected peptides before immunization, which might be a requirement for an adjuvant effect. However, three of four immunized patients mounted a humoral as well as cellular response against the pertussis peptides used. The induced T cell immunity was restricted to one of the two peptides in responding patients. Established T cell lines and MHC blocking studies indicated that the T cell epitopes of the two peptides had a different MHC restriction. The type of T cell response induced seemed to govern the humoral response. The only durable antibody response was accompanied by the presence of a CD4(+) T cell response against the same peptide. Immunization with an anti-idiotype conjugated to synthetic peptides might thus induce both a B and a T cell response against the peptides and the type of induced T cells (CD4 or CD8) governs the quality of the humoral response. Moreover, the possibility of boosting or inducing a response against the antigen from which the peptide sequences were deduced also seemed feasible.  相似文献   

19.
Celiac Sprue is an HLA DQ2 (or DQ8)-associated autoimmune disorder of the human small intestine that is induced by dietary exposure to wheat gliadin and related proteins from barley, rye, and possibly other food grains. Recently, tissue transglutaminase (tTGase)-catalyzed deamidation of gliadin peptides has been shown to increase their potency for activating patient-derived, gliadin-specific T cells, suggesting that tTGase plays a causative role in the onset of an inflammatory response to toxic food grains. To dissect the molecular recognition features of tTGase for gluten derived peptides, the regioselectivity and steady-state kinetics of tTGase-catalyzed deamidation of known immunogenic peptides were investigated. The specificity of recombinant human tTGase for all immunogenic peptides tested was comparable to and, in some cases, appreciably higher than the specificity for its natural substrate. Although each peptide was glutamine-rich, tTGase exhibited a high degree of regioselectivity for a particular glutamine residue in each peptide. This selectivity correlated well with Q --> E substitutions that have earlier been shown to enhance the immunogenicity of the corresponding gliadin peptides. The specificity of tTGase toward homologues of PQPQLPY, a sequence motif found in immunodominant gliadin peptides, was analyzed in detail. Remarkably, the primary amino acid sequences of wheat-, rye-, and barley-derived proteins included many single-residue variants of this sequence that were high-affinity substrates of tTGase, whereas the closest homologues of this sequence found in rice, corn, or oat proteins were much poorer substrates of tTGase. (Rice, corn, and oats are nontoxic ingredients of the Celiac diet.) No consensus sequence for a high-affinity substrate of tTGase could be derived from our data, suggesting that the secondary structures of these food-grain peptides were important in their recognition by tTGase. Finally, under steady-state turnover conditions, a significant fraction of the tTGase active site was covalently bound to a representative high-affinity immunogenic gliadin peptide, suggesting a common mechanism by which cells responsible for immune surveillance of the intestinal tract recognize and generate an antibody response against both gliadin and tTGase. In addition to providing a quantitative framework for understanding the role of tTGase in Celiac Sprue, our results lay the groundwork for the design of small molecule mimetics of gliadin peptides as selective inhibitors of tTGase.  相似文献   

20.
Celiac disease is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins, including the α-gliadins. It has been shown that α-gliadins harbor several major epitopes involved in the disease pathogenesis. A major step towards elimination of gluten toxicity for celiac disease patients would thus be the elimination of such epitopes from α-gliadins. We have analyzed over 3,000 expressed α-gliadin sequences from 11 bread wheat cultivars to determine whether they encode for peptides potentially involved in celiac disease. All identified epitope variants were synthesized as peptides and tested for binding to the disease-associated HLA-DQ2 and HLA-DQ8 molecules and for recognition by patient-derived α-gliadin specific T cell clones. Several specific naturally occurring amino acid substitutions were identified for each of the α-gliadin derived peptides involved in celiac disease that eliminate the antigenic properties of the epitope variants. Finally, we provide proof of principle at the peptide level that through the systematic introduction of such naturally occurring variations α-gliadins genes can be generated that no longer encode antigenic peptides. This forms a crucial step in the development of strategies to modify gluten genes in wheat so that it becomes safe for celiac disease patients. It also provides the information to design and introduce safe gluten genes in other cereals, which would exhibit improved quality while remaining safe for consumption by celiac disease patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号