首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian NADH-cytochrome b5 reductase (b5R) is an N-myristoylated protein that is dually targeted to ER and mitochondrial outer membranes. The N-linked myristate is not required for anchorage to membranes because a stretch of hydrophobic amino acids close to the NH2 terminus guarantees a tight interaction of the protein with the phospholipid bilayer. Instead, the fatty acid is required for targeting of b5R to mitochondria because a nonmyristoylated mutant is exclusively localized to the ER. Here, we have investigated the mechanism by which N-linked myristate affects b5R targeting. We find that myristoylation interferes with interaction of the nascent chain with signal recognition particle, so that a portion of the nascent chains escapes from cotranslational integration into the ER and can be post-translationally targeted to the mitochondrial outer membrane. Thus, competition between two cotranslational events, binding of signal recognition particle and modification by N-myristoylation, determines the site of translation and the localization of b5R.  相似文献   

2.
The covalent attachment of myristic acid to the NH2-terminal glycine residue of proteins is catalyzed by the enzyme myristoyl CoA:protein N-myristoyltransferase (NMT). Using synthetic octapeptide substrates we have identified and characterized an NMT activity in wheat germ lysates used for cell-free translation of exogenous mRNAs. C-12 and C-14 fatty acids are efficiently transferred to the peptides by this plant NMT, but C-10 and C-16 fatty acids are not. Glycine is required as the NH2-terminal residue: peptides with an NH2-terminal alanine were not substrates. Peptides with proline, aspartic acid, or tyrosine residues adjacent to the NH2-terminal glycine were also not myristoylated. Serine in the fifth position reduced the peptide's Km up to 4000-fold. We have chemically synthesized a sulfur analogue of myristate, 11-(ethylthio)undecanoic acid. Its CoA ester is as good a substrate as myristoyl-CoA for both wheat germ and yeast NMT. Peptides linked to 11-(ethylthio)undecanoic acid are less hydrophobic than the corresponding myristoylpeptides. 11-(Ethylthio)-undecanoic acid may, therefore, help define the role of myristic acid in targeting of acyl proteins within cells.  相似文献   

3.
We have dissected the molecular determinants involved in targeting the protein serine kinase PSKH1 to the endoplasmic reticulum (ER), the Golgi apparatus, and the plasma membrane (PM). Given this intracellular localization pattern, a potential role of PSKH1 in the secretory pathway was explored. The amino-terminal of PSKH1 revealed a striking similarity to the often acylated Src homology domain 4 (SH4)-harboring nonreceptor tyrosine kinases. Biochemical studies demonstrated that PSKH1 is myristoylated on glycine 2 and palmitoylated on cysteine 3. Dual amino-terminal acylation targets PSKH1 to Golgi as shown by colocalization with beta-COP and GM130, while nonpalmitoylated (myristoylated only) PSKH1 targets intracellular membranes colocalizing with protein disulphide isomerase (PDI, a marker for ER). Immunoelectron microscopy revealed that the dually acylated amino-terminal domain (in fusion with EGFP) was targeted to Golgi membranes as well as to the plasma membrane (PM), suggesting that the amino-terminal domain provides PSKH1 with membrane specificity dependent on its fatty acylation status. Subcellular fractionation by sucrose gradient analysis confirmed the impact of dual fatty acylation on endomembrane targeting, while cytosol and membrane fractioning revealed that myristoylation but not palmitoylation was required for general membrane association. A minimal region required for proper Golgi targeting of PSKH1 was identified within the first 29 amino acids. Expression of a PSKH1 mutant where the COOH-terminal kinase domain was swapped with green fluorescent protein and cysteine 3 was exchanged with serine resulted in disassembly of the Golgi apparatus as visualized by redistribution of beta-COP and GM130 to a diffuse cytoplasmic pattern, while leaving the tubulin skeleton intact. Our results suggest a structural and regulatory role of PSKH1 in maintenance of the Golgi apparatus, a key organelle within the secretory pathway.  相似文献   

4.
S-palmitoylation occurs on intracellular membranes and, therefore, membrane anchoring of proteins must precede palmitate transfer. However, a number of palmitoylated proteins lack any obvious membrane targeting motifs and it is unclear how this class of proteins become membrane associated before palmitoylation. Cysteine-string protein (CSP), which is extensively palmitoylated on a "string" of 14 cysteine residues, is an example of such a protein. In this study, we have investigated the mechanisms that govern initial membrane targeting, palmitoylation, and membrane trafficking of CSP. We identified a hydrophobic 31 amino acid domain, which includes the cysteine-string, as a membrane-targeting motif that associates predominantly with endoplasmic reticulum (ER) membranes. Cysteine residues in this domain are not merely sites for the addition of palmitate groups, but play an essential role in membrane recognition before palmitoylation. Membrane association of the cysteine-string domain is not sufficient to trigger palmitoylation, which requires additional downstream residues that may regulate the membrane orientation of the cysteine-string domain. CSP palmitoylation-deficient mutants remain "trapped" in the ER, suggesting that palmitoylation may regulate ER exit and correct intracellular sorting of CSP. These results reveal a dual function of the cysteine-string domain: initial membrane binding and palmitoylation-dependent sorting.  相似文献   

5.
6.
Plasma membrane targeting of Ras requires CAAX motif modifications together with a second signal from an adjacent polybasic domain or nearby cysteine palmitoylation sites. N-terminal myristoylation is known to restore membrane binding to H-ras C186S (C-186 is changed to S), a mutant protein in which all CAAX processing is abolished. We show here that myristoylated H-ras C186S is a substrate for palmitoyltransferase, despite the absence of C-terminal farnesylation, and that palmitoylation is absolutely required for plasma membrane targeting of myristoylated H-ras. Similarly, the polybasic domain is required for specific plasma membrane targeting of myristoylated K-ras. In contrast, the combination of myristoylation plus farnesylation results in the mislocalization of Ras to numerous intracellular membranes. Ras that is only myristoylated does not bind with a high affinity to any membrane. The specific targeting of Ras to the plasma membrane is therefore critically dependent on signals that are contained in the hypervariable domain but can be supported by N-terminal myristoylation or C-terminal prenylation. Interestingly, oncogenic Ras G12V that is localized correctly to the plasma membrane leads to mitogen-activated protein kinase activation irrespective of the combination of targeting signals used for localization, whereas Ras G12V that is mislocalized to the cytosol or to other membranes activates mitogen-activated protein kinase only if the Ras protein is farnesylated.  相似文献   

7.
Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with [3H]myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. In contrast, in vitro acylation of both the synthetase and transferase subunits, as well as the activities of luciferase, transferase, and aldehyde dehydrogenase, were not adversely affected by cerulenin. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10 micrograms/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from [14C]acetate, whereas uptake and incorporation of exogenous [14C]myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with [3H]tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with [3H]tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which [3H]myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction.  相似文献   

8.
Targeting signals are critical for proteins to find their specific cellular destination. Signals for protein targeting to the endoplasmic reticulum (ER), mitochondria, peroxisome and nucleus are distinct and the mechanisms of protein translocation across these membrane compartments also vary markedly. Recently, however, a number of proteins have been shown to be present in multiple cellular sites such as mitochondria and ER, cytosol and mitochondria, plasma membrane and mitochondria, and peroxisome and mitochondria suggesting the occurrence of multimodal targeting signals in some cases. Cytochrome P450 monooxygenases (CYPs), which play crucial roles in pharmacokinetics and pharmacodynamics of drugs and toxins, are the prototype of bimodally targeted proteins. Several members of family 1, 2 and 3 CYPs have now been reported to be associated with mitochondria and plasma membrane in addition to the ER. This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and ER. The bimodal targeting of these proteins is driven by their N-terminal signals which carry essential elements of both ER targeting and mitochondria targeting signals. These multimodal signals have been termed chimeric signals appropriately to describe their dual targeting property. The cryptic mitochondrial targeting signals of CYP2B1, 2D6, 2E1 require activation by protein kinase A or protein kinase C mediated phosphorylation at sites immediately flanking the targeting signal and/or membrane anchoring regions. The cryptic mitochondria targeting signal of CYP1A1 requires activation by endoproteolytic cleavage by a cytosolic endoprotease, which exposes the mitochondrial signal. This review discusses both mechanisms of bimodal targeting and toxicological consequences of mitochondria targeted CYP proteins.  相似文献   

9.
We have constructed mutants by using linker insertion followed by deletion in the region of cloned Rous sarcoma virus DNA coding for the N-terminal 9 kilodaltons of the src protein. Previous work implicated this region in the membrane association of the protein. The mutations had little effect on src tyrosine kinase activity. Substitution of a tri- or tetrapeptide for amino acids 15 to 27, 15 to 49, or 15 to 81 had little effect on the in vitro transforming capacity of the virus. Like wild-type p60src, the src proteins of these mutants associated with plasma membranes and were labeled with [3H]myristic acid. In contrast, a mutant whose src protein had the dipeptide Asp-Leu substituted for amino acids 2 to 81 and a mutant with the tripeptide Asp-Leu-Gly substituted for amino acids 2 to 15 were transformation defective, and the mutant proteins did not associate with membranes and were not labeled with [3H]myristic acid. These results suggest that amino acids 2 to 15 serve as an attachment site for myristic acid and as a membrane anchor. Since deletions including this region prevent transformation, and since tyrosine kinase activity is not diminished by the deletions, these results imply that target recognition is impaired by mutations altering the very N terminus, perhaps through their effect on membrane association.  相似文献   

10.
We report here on the identification and characterization of novel 2-enoyl thioester reductases of fatty acid metabolism, Etr1p from Candida tropicalis and its homolog Ybr026p (Mrf1'p) from Saccharomyces cerevisiae. Overexpression of these proteins in S. cerevisiae led to the development of significantly enlarged mitochondria, whereas deletion of the S. cerevisiae YBR026c gene resulted in rudimentary mitochondria with decreased contents of cytochromes and a respiration-deficient phenotype. Immunolocalization and in vivo targeting experiments showed these proteins to be predominantly mitochondrial. Mitochondrial targeting was essential for complementation of the mutant phenotype, since targeting of the reductases to other subcellular locations failed to reestablish respiratory growth. The mutant phenotype was also complemented by a mitochondrially targeted FabI protein from Escherichia coli. FabI represents a nonhomologous 2-enoyl-acyl carrier protein reductase that participates in the last step of the type II fatty acid synthesis. This indicated that 2-enoyl thioester reductase activity was critical for the mitochondrial function. We conclude that Etr1p and Ybr026p are novel 2-enoyl thioester reductases required for respiration and the maintenance of the mitochondrial compartment, putatively acting in mitochondrial synthesis of fatty acids.  相似文献   

11.
12.
Bovine retinas incubated with [3H]myristic acid incorporated detectable radiolabel into only a few proteins. The most heavily labeled was the alpha subunit of the rod outer segment G protein transducin (Gt alpha). The radiolabeled protein was specifically eluted from illuminated membranes in the presence of GTP, displaying the unique solubility properties of Gt alpha. It comigrated with Gt alpha in electrophoresis and chromatography and was immunoprecipitated by Gt alpha-specific antibodies. The radiolabel was confirmed by hydrolysis, chemical derivatization, and chromatography to be amide-linked myristic acid. The solubility of the myristoylated Gt alpha indicates that myristoylation is not sufficient to cause tight membrane association of this normally membrane-bound subunit. Incorporation of [3H]myristate was blocked by the protein synthesis inhibitor cycloheximide, suggesting that that fatty acid group is introduced during or soon after translation in the rod inner segment.  相似文献   

13.
We have studied protein acylation in neutrophils of guinea pigs using [3H]myristate. A large number of neutrophil proteins were acylated with exogenously added myristic acid. The myristoylation was detected on 110, 77, 56, 54, 52, 42, and 37 kDa proteins. These myristoylations were stronger in peripheral blood than in peritoneal cells. Myristic acid was found to be covalently linked by an amid bond to these proteins since the proteins were resistant to boiling, chloroform/methanol and hydroxylamine treatment. Most myristoylated proteins appeared to be associated with the membrane fraction, while some of the proteins such as 77 kDa one was distributed also in the cytoplasm and translocated from the cytoplasm to the plasma membrane by stimulation. Lysozyme was myristoylated in vitro by the N-hydroxysuccinimide ester of myristic acid. The myristoylated lysozyme had an ability to be associated with phospholipid liposomes, and the membrane-associated lysozyme became a substrate of the rat brain Ca2+- and phospholipid dependent protein kinase (protein kinase C). These results indicate that myristoylation in neutrophil proteins may have an important role in metabolic regulation through their membrane association.  相似文献   

14.
15.
During infection, Beet necrotic yellow vein virus (BNYVV) particles localize transiently to the cytosolic surfaces of mitochondria. To understand the molecular basis and significance of this localization, we analyzed the targeting and membrane insertion properties of the viral proteins. ORF1 of BNYVV RNA-2 encodes the 21-kDa major coat protein, while ORF2 codes for a 75-kDa minor coat protein (P75) by readthrough of the ORF1 stop codon. Bioinformatic analysis highlighted a putative mitochondrial targeting sequence (MTS) as well as a major (TM1) and two minor (TM3 and TM4) transmembrane regions in the N-terminal part of the P75 readthrough domain. Deletion and gain-of-function analyses based on the localization of green fluorescent protein (GFP) fusions showed that the MTS was able to direct a reporter protein to mitochondria but that the protein was not persistently anchored to the organelles. GFP fused either to MTS and TM1 or to MTS and TM3-TM4 efficiently and specifically associated with mitochondria in vivo. The actual role of the individual domains in the interaction with the mitochondria seemed to be determined by the folding of P75. Anchoring assays to the outer membranes of isolated mitochondria, together with in vivo data, suggest that the TM3-TM4 domain is the membrane anchor in the context of full-length P75. All of the domains involved in mitochondrial targeting and anchoring were also indispensable for encapsidation, suggesting that the assembly of BNYVV particles occurs on mitochondria. Further data show that virions are subsequently released from mitochondria and accumulate in the cytosol.  相似文献   

16.
A protein of 80 kDa apparent molecular mass was found to be specifically myristolylated in rat brain cytosols derived from either whole brain or synaptosomes. The attachment of the fatty acid took place in the absence of protein synthesis, since the cytosols did not incorporate [14C]lysine into protein, nor did cycloheximide affect the incorporation of the myristic acid into the protein. The fatty acid was incorporated into the protein via an acid-labile/alkali-resistant band, and Pronase digestion of the labelled protein showed that the lipid was covalently linked to a glycine residue. Together, these data suggested that the myristic acid was amide-linked to the N-terminal residue of the protein. The protein was identified as one of the major protein kinase C substrates, the MARCKS (myristoylated alanine-rich C kinase substrate) protein, by showing that Ca2+ stimulated its phosphorylation, by its heat stability and by immune precipitation (using an antiserum to the MARCKS protein). Incorporation of myristic acid into intact protein continued for up to 12 h, despite the fact that over this period some degradation of the protein could be demonstrated. In pulse-chase experiments, the pattern of loss of the incorporated fatty acid was similar to that of the protein itself, and therefore the loss of radioactivity probably reflects protein degradation rather than specific de-acylation of the protein. Together, these results suggest that there is a pool of unacylated MARCKS protein in the rat brain.  相似文献   

17.
18.
Dihydroceramide Delta4-desaturase (DES) catalyzes the desaturation of dihydroceramide into ceramide. In mammals, two gene isoforms named DES1 and DES2 have recently been identified. The regulation of these enzymes is still poorly understood. This study was designed to examine the possible N-myristoylation of DES1 and DES2 and the effect of this co-translational modification on dihydroceramide Delta4-desaturase activity. N-MyristoylTransferases (NMT) catalyze indeed the formation of a covalent linkage between myristoyl-CoA and the N-terminal glycine of candidate proteins, as found in the sequence of DES proteins. The expression of both rat DES in COS-7 cells evidenced first that DES1 but not DES2 was associated with an increased dihydroceramide Delta4-desaturase activity. Then, we showed that recombinant DES1 was myristoylated in vivo when expressed in COS-7 cells. In addition, in vitro myristoylation assay with a peptide substrate corresponding to the N-terminal sequence of the protein confirmed that NMT1 has a high affinity for DES1 myristoylation motif (apparent K(m)=3.92 microM). Compared to an unmyristoylable mutant form of DES1 (Gly replaced by an Ala), the dihydroceramide Delta4-desaturase activity of the myristoylable DES1-Gly was reproducibly and significantly higher. Finally, the activity of wild-type DES1 was also linearly increased in the presence of increased concentrations of myristic acid incubated with the cells. These results demonstrate that DES1 is a newly discovered myristoylated protein. This N-terminal modification has a great impact on dihydroceramide Delta4-desaturase activity. These results suggest therefore that myristic acid may play an important role in the biosynthesis of ceramide and in sphingolipid metabolism.  相似文献   

19.
Hydrophobic membrane proteins are cotranslationally targeted to the endoplasmic reticulum (ER) membrane, mediated by hydrophobic signal sequence. Mitochondrial membrane proteins escape this mechanism despite their hydrophobic character. We examined sorting of membrane proteins into the mitochondria, by using mitochondrial ATP-binding cassette (ABC) transporter isoform (ABC-me). In the absence of 135-residue N-terminal hydrophilic segment (N135), the membrane domain was integrated into the ER membrane in COS7 cells. Other sequences that were sufficient to import soluble protein into mitochondria could not import the membrane domain. N135 imports other membrane proteins into mitochondria. N135 prevents cotranslational targeting of the membrane domain to ER and in turn achieves posttranslational import into mitochondria. In a cell-free system, N135 suppresses targeting to the ER membranes, although it does not affect recognition of hydrophobic segments by signal recognition particle. We conclude that the N135 segment blocks the ER targeting of membrane proteins even in the absence of mitochondria and switches the sorting mode from cotranslational ER integration to posttranslational mitochondrial import.  相似文献   

20.
Guanylate cyclase-activating protein-2 (GCAP-2) is a retinal Ca2+ sensor protein. It plays a central role in shaping the photoreceptor light response and in light adaptation through the Ca2+-dependent regulation of the transmembrane retinal guanylate cyclase (GC). GCAP-2 is N-terminally myristoylated and the full activation of the GC requires this lipid modification. The structural and functional role of the N-terminus and particularly of the myristoyl moiety is currently not well understood. In particular, detailed structural information on the myristoylated N-terminus in the presence of membranes was not available. Therefore, we studied the structure and dynamics of a 19 amino acid peptide representing the myristoylated N-terminus of GCAP-2 bound to lipid membranes by solid-state NMR. 13C isotropic chemical shifts revealed a random coiled secondary structure of the peptide. Peptide segments up to Ala9 interact with the membrane surface. Order parameters for Cα and side chain carbons obtained from DIPSHIFT experiments are relatively low, suggesting high mobility of the membrane-associated peptide. Static 2H solid-state NMR measurements show that the myristoyl moiety is fully incorporated into the lipid membrane. The parameters of the myristoyl moiety and the DMPC host membrane are quite similar. Furthermore, dynamic parameters (obtained from 2H NMR relaxation rates) of the peptide's myristic acid chain are also comparable to those of the lipid chains of the host matrix. Therefore, the myristoyl moiety of the N-terminal peptide of GCAP-2 fills a similar conformational space as the surrounding phospholipid chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号