首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thymus exerts a potent influence on the development of I region self-recognition and antigen recognition by T cells. The mechanism by which the thymus acts on nascent T cells is unknown. It is assumed, however, that a cell interaction between the developing T cell and an la antigen-bearing cell in the thymus is involved. There are several candidates for the critical thymic cell; thymic epithelial, nurse, and antigen-presenting cells (APC) or dendritic cells. Because thymic epithelial cells derive from the third pharyngeal pouch and thymic APC derive from bone marrow, radiation-induced bone marrow chimeras allow the artificial creation of a chimeric thymus gland in which thymic epithelial cells and APC can be genetically different. We made radiation-induced bone marrow chimeras (F1 leads to P) using supralethal radiation doses (1200 R) and found bone marrow donor- (F1) type APC in the thymuses 3 wk after radiation. When such mice fully reconstitute their immune systems, their T cells behave as donor F1 phenotype T cells. Thus, the I region self-restriction and antigen-recognition repertoire of the T cells correlates with the genotype of the bone marrow-derived thymic APC, not the thymic epithelial cell.  相似文献   

2.
The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of the thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow-derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment, and their complex interactions during the T-cell maturation process are summarized here with the objective of contributing to a better understanding of the function of the thymus, as well as assisting in the search for new therapeutic approaches to improve the immune response in various pathological conditions.Key words: thymus, T-cell maturation, thymic microenvironment, thymocyte differantiation, chemokines, extracellular matrix, thymic nurse cells, metalloproteinases  相似文献   

3.
T lymphocytes are generated throughout life, arising from bone marrow-derived progenitors that complete an essential developmental process in the thymus. Thymic T cell education leads to the generation of a self-restricted and largely self-tolerant peripheral T-cell pool and is facilitated by interactions with thymic stromal cells residing in distinct supportive niches. The signals governing thymocyte precursor migration into the thymus, directing thymocyte navigation through thymic microenvironments and mature T-cell egress into circulation were, until recently, largely unknown, but presumed to be mediated to a large extent by chemokine signalling. Recent studies have now uncovered various specific functions for members of the chemokine superfamily in the thymus. These studies have not only revealed distinct but also in some cases overlapping roles for several chemokine family members in various thymocyte migration events and have also shown that homing and positioning of other cells in the thymus, such as dendritic cells and natural killer T cells is also chemokine-dependent. Here, we discuss current understanding of the role of chemokines in the thymus and highlight key future avenues for investigation in this field.  相似文献   

4.
Proinsulin is a key Ag in type 1 diabetes, but the mechanisms regulating proinsulin immune tolerance are unknown. We have shown that preproinsulin-2 gene-deficient mice (proins-2(-/-)) are intolerant to proinsulin-2. In this study, we analyzed the mechanisms underlying T cell-mediated tolerance to proinsulin-2 in 129/Sv nonautoimmune mice. The expression of one proinsulin-2 allele, whatever its parental origin, was sufficient to maintain tolerance. The site of proinsulin-2 expression relevant to tolerance was evaluated in thymus and bone marrow chimeras. CD4+ T cell reactivity to proinsulin-2 was independent of proinsulin-2 expression in radiation-sensitive bone marrow-derived cells. A wt thymus restored tolerance in proins-2(-/-) mice. Conversely, the absence of the preproinsulin-2 gene in radioresistant thymic cells was sufficient to break tolerance. Although chimeric animals had proinsulin-2-reactive CD4+ T cells in their peripheral repertoire, they displayed no insulitis or insulin Abs, suggesting additional protective mechanisms. In a model involving transfer to immunodeficient (CD3epsilon(-/-)) mice, naive and proinsulin-2-primed CD4+ T cells were not activated, but could be activated by immunization regardless of whether the recipient mice expressed proinsulin-2. Furthermore, we could not identify a role for putative specific T cells regulating proinsulin-2-reactive CD4+ T in transfer experiments. Thus, proinsulin-2 gene expression by radioresistant thymic epithelial cells is involved in the induction of self-tolerance, and additional factors are required to induce islet abnormalities.  相似文献   

5.
The role of the thymus in T cell commitment of hemopoietic precursor is yet controversial. We previously identified a major T cell progenitor activity in precursor cells isolated from bone marrow-derived spleen colonies. In this study, we characterize the properties of these pre-T cells. We demonstrate that they have unique phenotype and can be generated in a total absence of any thymic influence. Indeed, even when studied at the single-cell level, extrathymic T cell-committed precursors express T cell-specific genes. Moreover, these cells are not committed to a particular T cell differentiation pathway because they can generate both extrathymic CD8alphaalpha+ intraepithelial lymphocytes and thymus-derived conventional thymocytes. We also compared these pre-T cells with fully T cell-committed thymic progenitors. When tested in vitro or by direct intrathymic transfer, these cells have a low clonogenic activity. However, after i.v. transfer, thymus repopulation is efficient and these precursors generate very high numbers of peripheral T cells. These results suggest the existence of extra steps of pre-T cell maturation that improve thymus reconstitution capacity and that can be delivered even after full T cell commitment. Consequently, our studies identify a source of extrathymic progenitors that will be helpful in defining the role of the thymus in the earliest steps of T cell differentiation.  相似文献   

6.
N Brenden  C Rietz  J B?hme 《Cytokine》1999,11(10):766-772
The NOD mouse is an animal model for insulin-dependent diabetes with many similarities to the human disease. NOD mice which are transgenic for the Ea gene, allowing expression of the E molecule, are protected from diabetes and rarely develop insulitis. We have constructed bone marrow chimeras between transgenic and non-transgenic NOD mice to study the correlation of E expression on bone marrow derived cells and thymic epithelium vs the production of IL-4 and IFN-gamma. We show that NOD-E-->NOD-E and NOD-E-->NOD chimeras have elevated levels of IL-4 compared to NOD-->NOD and NOD-->NOD-E chimeras in the thymus. However, in the periphery the protected NOD-E-->NOD-E show much higher IL-4 levels than any of the other chimeras. This drop in peripheral IL-4 production seen in NOD-E-->NOD, NOD-->NOD-E and NOD-->NOD chimeras correlates with the increased insulitis seen in these mice compared to NOD-E-->NOD-E. In contrast, there were no differences in IFN-gamma production between the chimeras. We suggest that the precommitted, regulatory T cells, selected in an E-expressing thymic environment, need continuous interaction with E-expressing primary antigen presenting cells in the periphery for optimal IL-4 production. Decrease in IL-4 production correlates with increased insulitis.  相似文献   

7.
A factor extracted from syngeneic thymic lymphoid cells (thymocytes) is shown to amplify the proliferative (MLC) response of syngeneic lymphoid cells to alloantigen in vitro. The optimal conditions for an effect of the thymus factor are quantitatively defined by kinetic and dose-response studies. Other variables that could potentially influence the activity of the thymus factor, such as the presence of 2-mercaptoethanol and the source of alloantigen, are identified. Factor activity can be recovered from semi-allogeneic thymocytes, as well as syngeneic thymocytes. The factor appears to predominantly effect the proliferative response of T cells localized in peripheral lymphoid organs. As such, this factor appears to be distinct from the variety of previously described factors derived from thymic reticuloepithelial elements that are thought to primarily induce the differentiation of T cell precursors found predominantly in bone marrow. Several possible mechanisms of action of this thymocyte-derived factor are considered.  相似文献   

8.
Streptozotocin (STZ)-induced diabetes in rats was associated with marked decreases in thymus weight and the number of thymic lymphocytes. Histologically, the cortical lymphocytes which were present near the cortico-medullary junction in the thymus seemed to be reduced selectively in the STZ-induced diabetes. Rosette-forming cells, which bind to guinea pig erythrocytes in the presence of fetal calf serum, were also significantly decreased. Insulin treatment allayed these intrathymic changes. Preincubation of thymic lymphocytes from diabetic rats with thymosin fraction 5 significantly enhanced the percentage of rosette-forming cells to near the control level. These results suggest that a maturational impairment of thymus cortical lymphocytes may be caused in STZ-induced diabetes with hypoinsulinemia and it may be intimately related to reductions in thymus weight and the number of thymic lymphocytes.  相似文献   

9.
10.
Although it is known that resident gut flora contribute to immune system function and homeostasis, their role in the progression of the autoimmune disease type 1 diabetes (T1D) is poorly understood. Comparison of stool samples isolated from Bio-Breeding rats, a classic model of T1D, shows that distinct bacterial populations reside in spontaneous Bio-Breeding diabetes-prone (BBDP) and Bio-Breeding diabetes-resistant animals. We have previously shown that the oral transfer of Lactobacillus johnsonii strain N6.2 (LjN6.2) from Bio-Breeding diabetes-resistant to BBDP rodents conferred T1D resistance to BBDP rodents, whereas Lactobacillus reuteri strain TD1 did not. In this study, we show that diabetes resistance in LjN6.2-fed BBDP rodents was correlated to a Th17 cell bias within the mesenteric lymph nodes. The Th17 bias was not observed in the non-gut-draining axillary lymph nodes, suggesting that the Th17 bias was because of immune system interactions with LjN6.2 within the mesenteric lymph node. LjN6.2 interactions with the immune system were observed in the spleens of diabetes-resistant, LjN6.2-fed BBDP rats, as they also possessed a Th17 bias in comparison with control or Lactobacillus reuteri strain TD1-fed rats. Using C57BL/6 mouse in vitro assays, we show that LjN6.2 directly mediated enhanced Th17 differentiation of lymphocytes in the presence of TCR stimulation, which required APCs. Finally, we show that footpad vaccination of NOD mice with LjN6.2-pulsed dendritic cells was sufficient to mediate a Th17 bias in vivo. Together, these data suggest an interesting paradigm whereby T1D induction can be circumvented by gut flora-mediated Th17 differentiation.  相似文献   

11.
Leptin-deficient ob/ob and leptin receptor (Ob-rb)-deficient db/db mice display a marked thymic atrophy and exhibit defective immune responses. Lymphocytes express leptin receptors and leptin exerts direct effects on T cells in vitro. In addition, ob/ob and db/db mice display multiple neuroendocrine and metabolic defects, through which leptin deficiency may indirectly affect the immune system in vivo. To study the relative contributions of direct and indirect effects of leptin on the immune system in a normal environment, we generated bone marrow chimeras (BMCs) by transplantation of leptin receptor-deficient db/db, or control db/+, bone marrow cells into wild-type (WT) recipients. The size and cellularity of the thymus, as well as cellular and humoral immune responses, were similar in db/db to WT and db/+ to WT BMCs. The immune phenotype of db/db mice is thus not explained by a cell autonomous defect of db/db lymphocytes. Conversely, thymus weight and cell number were decreased in the reverse graft setting in WT to db/db BMCs, indicating that expression of the leptin receptor in the environment is important for T cell development. Finally, normal thymocyte development occurred in fetal db/db thymi transplanted into WT hosts, indicating that direct effects of leptin are not required locally in the thymic microenvironment. In conclusion, direct effects of leptin on bone marrow-derived cells and on thymic stromal cells are not necessary for T lymphocyte maturation in normal mice. In contrast, leptin receptor deficiency affects the immune system indirectly via changes in the systemic environment.  相似文献   

12.
The thymus plays a crucial role in the development of T lymphocytes providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiation into mature T-cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow–derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment and their complex interactions during the T-cell maturation process with the objective of contributing to a better understanding of the function of the thymus as well as assist in the search for new therapeutic approaches to improve the immune response in various pathological conditions are summarized here.  相似文献   

13.
Some parameters of distribution according to the lymphoid cell and its nuclei size in the peripheral blood, bone marrow, thymus and spleen of healthy rats were studied. A comparative assay revealed population homogeneity for the thymus and bone marrow lymphocytes as well as their mean diameter differences. Mixing of these cell types markedly changed the distribution parameters of newly formed population, as shown on the model of the bone marrow lymphoid reaction caused by migration of thymic lymphocytes after 5-fluorouracil use. Preliminary thymectomy excluded migration and homogeneity of the bone marrow lymphocyte size remained unchanged.  相似文献   

14.
A role for CCR9 in T lymphocyte development and migration   总被引:14,自引:0,他引:14  
CCR9 mediates chemotaxis in response to CCL25/thymus-expressed chemokine and is selectively expressed on T cells in the thymus and small intestine. To investigate the role of CCR9 in T cell development, the CCR9 gene was disrupted by homologous recombination. B cell development, thymic alphabeta-T cell development, and thymocyte selection appeared unimpaired in adult CCR9-deficient (CCR9(-/-)) mice. However, competitive transplantation experiments revealed that bone marrow from CCR9(-/-) mice was less efficient at repopulating the thymus of lethally irradiated Rag-1(-/-) mice than bone marrow from littermate CCR9(+/+) mice. CCR9(-/-) mice had increased numbers of peripheral gammadelta-T cells but reduced numbers of gammadeltaTCR(+) and CD8alphabeta(+)alphabetaTCR(+) intraepithelial lymphocytes in the small intestine. Thus, CCR9 plays an important, although not indispensable, role in regulating the development and/or migration of both alphabeta(-) and gammadelta(-) T lymphocytes.  相似文献   

15.
Neonatal thymectomy prevents tolerance induction with bovine serum albumin (BSA) in Wistar Furth (WF) rats whose thymus-derived (T) cell deficit is reconstituted with adult nonadherent peripheral blood lymphocytes (PBL). Sham-thymectomized (STx) rats given PBL become tolerant. To establish whether the adult T cells become tolerant in STx rats, their carrier-reactivity was studied in a cooperative immune response following challenge with methylated BSA (mBSA). The results indicate that carrier-reactive cells, derived from PBL, do become tolerant of BSA in the presence, but not in the absence, of the thymus. To determine whether thymic function during tolerance induction is mediated by suppressor T cells, attempts were made to replace the thymus with various populations of thymocytes or lymphoid cells from neonatal or adult normal rats or neonatal BSA-injected rats. No cell population tried could substitute for the thymus during tolerance induction. In addition, it was found that BSA-tolerant rats with intact thymi do not contain either nonspecific suppressor cells whose activity can be boosted with mBSA or specific suppressor activity demonstrable on transfer to normal rats. Timed thymectomy experiments showed that the thymus is required for more than 2, but less than 5 to 7 days after tolerogen injection for significant tolerance induction. These results imply that the thymus itself is necessary for tolerance induction in a peripheral T-cell population and that its effect is not mediated by suppressor cells. It is suggested that peripheral T helper cells may periodically recirculate through the thymus, at least in young rats, and become tolerant of antigen complexed with Ia antigens in the thymic epithelium. Such a mechanism may be of great importance in the development of self-recognition.  相似文献   

16.
The myelopoietic inducing potential of mouse thymic stromal cells   总被引:1,自引:0,他引:1  
The thymus has generally been considered as being solely involved in T cell maturation. In this study we have demonstrated that mouse thymic stroma can also support myelopoiesis. Bone marrow from mice treated with 5-fluorouracil was depleted of cells expressing Mac-1, CD4, and CD8 and incubated on lymphocyte-free monolayer cultures of adherent thymic stromal cells. After 7 days there was a marked increase in nonadherent cells, the majority of which were Mac-1+, FcR+, and HSA+. These proliferating bone marrow cells also expressed markers (MTS 17 and MTS 37) found on thymic stromal cells. Such cells were not found in thymic cultures alone, in bone marrow cultured alone, or on control adherent cell monolayers. Supernatants from the cultured thymic stroma, however, were able to induce these cell types in the bone marrow precursor population. Incubation of normal thymocytes with a monolayer of these in vitro cultivated Mac-1+, MTS 17+, MTS 37+ myeloid cells leads to selective phagocytosis of CD4+ CD8+ cells. Hence, this study demonstrates that the thymic adherent cells can induce myelopoiesis in bone marrow-derived precursor cells and provide a form of self-renewal for at least one population of thymic stromal cells. Furthermore, these induced cells are capable of selective phagocytosis of CD4+ CD8+ thymocytes and may provide one mechanism for the selective removal of such cells from the thymus.  相似文献   

17.
In order to better understand the apparent physiologic up-regulation in response to low levels of potentially lethal insults, murine T lymphocytes were analysed for functional and phenotypic alterations after exposure to 0.005 Gy/day, 0.01 Gy/day and 0.04 Gy/day in groups of ad-libitum-fed and calorie-restricted mice. These studies were conducted in two strains of mice: the long-lived and immunologically normal C57Bl/6 +/+ and the congenic short-lived immunologically depressed C57Bl/6 lpr/lpr. Whole-body exposure to 0.01 Gy/day and 0.04 Gy/day for an extended period of 20 days was associated with an increase in splenic proliferative response and with shifts in the proportions of T cell subpopulations in the thymus and spleen of both strains. Caloric restriction independently altered functional activity and T cell subpopulations in the same direction as low dose rates of ionizing radiation. Although the dose-response augmentation in proliferative activity was similar in the two strains, observed alterations in thymic and splenic T cell subpopulations were clearly different, suggesting that different mechanisms were responsible for immune enhancement in each strain.  相似文献   

18.
Leukemia inhibitory factor (LIF) is a cytokine involved in embryonic and hematopoietic development. To investigate the effects of LIF on the lymphoid system, we generated a line of transgenic mice that expresses diffusible LIF protein specifically in T cells. These mice display two categories of phenotype that were not previously attributed to LIF overexpression. First, they display B cell hyperplasia, polyclonal hypergammaglobulinemia and mesangial proliferative glomerulonephritis, defects similar to those described for transgenic mice overexpressing the functionally related cytokine, interleukin-6. Secondly, the LIF transgenic mice display novel thymic and lymph node abnormalities. In the thymus, cortical CD4+CD8+ lymphocytes are lost, while numerous B cell follicles develop. Peripheral lymph nodes contain a vastly expanded CD4+CD8+ lymphocyte population. Furthermore, the thymic epithelium is profoundly disorganized, suggesting that disruption of stroma-lymphocyte interactions is responsible for many observed defects. Transplantation of transgenic bone marrow into wild type recipients transfers both the thymic and lymph node defects. However, transplantation of wild type marrow into transgenic recipients rescues the lymph node abnormality, but not the thymic defect, indicating the thymic epithelium is irreversibly altered. Our observations are consistent with a role for LIF in maintaining a functional thymic epithelium that will support proper T cell maturation.  相似文献   

19.
Foxn1Delta is a hypomorphic allele of the nude gene that causes arrested thymic epithelial cell differentiation and abnormal thymic architecture lacking cortical and medullary domains. T cells develop in the Foxn1Delta/Delta adult thymus to the double- and single-positive stages, but in the apparent absence of double-negative 3 (DN3) cells; however, DN3 cells are present in the fetal thymus. To investigate the origin of this seemingly contradictory phenotype, we performed an analysis of fetal and adult DN cells in these mutants. Neither adult bone marrow-derived cells nor fetal liver cells from wild-type or Rag1-/- mice were able to differentiate to the DN2 or DN3 stage in the Foxn1Delta/Delta thymus. Our data suggest that thymopoiesis in the Foxn1Delta/Delta adult thymus proceeds from CD117- atypical progenitors, while CD117+ DN1a cells are absent or blocked in their ability to differentiate to the T lineage. Wild-type cells generated by this pathway in the postnatal thymus were exported to the periphery, demonstrating that these atypical cells contributed to the peripheral T cell pool. The Foxn1Delta/Delta adult (but not fetal) thymus also preferentially supports B cell development, specifically of the B-1 type, and this phenotype correlated with reduced Notch ligand expression in the adult stroma.  相似文献   

20.
Type I diabetes (T1D), mediated by autoreactive T cell destruction of insulin-producing islet beta cells, has been treated with bone marrow-derived hematopoietic stem cell (BM-HSC) transplantation. Older non-obese diabetic (NOD) mice recipients (3m, at disease-onset stage) receiving syngeneic BM-HSC progressed more rapidly to end-stage diabetes post-transplantation than younger recipients (4-6w, at disease-initiation stage). FACS analyses showed a higher percentage and absolute number of regulatory T cells (Treg) and lower proportion of proliferating T conventional cells (Tcon) in pancreatic lymph nodes from the resistant mice among the younger recipients compared to the rapid progressors among the older recipients. Treg distribution in spleen, mesenteric lymph nodes (MLN), blood and thymus between the two groups was similar. However, the percentage of thymic Tcon and the proliferation of Tcon in MLN and blood were lower in the young resistants. These results suggest recipient age and associated disease stage as a variable to consider in BM-HSC transplantation for treating T1D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号