首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The deoxyoligonucleotide, d(GGTATACC), forms a duplex structure that crystallizes in the DNA A form. This has been shown by both X-ray diffraction studies and Raman spectroscopy (1,2). The presence of the DNA B form has been reported using diffuse X-ray scattering from a crystal of the closely related sequence d(GGBrUABrUACC)(3). In this paper the infrared spectrum of the d(GGTATACC) crystal is presented and curve resolution of both the Raman and IR spectra have been carried out. The percentage of A and B forms have been estimated. The %B form in the crystal has been estimated from the IR spectra to be about 15% and from Raman to be about 20%. Moreover the IR spectrum of the A conformation in the crystal is slightly different from the IR spectrum of the A conformation in polynucleotide fibers in particular in the region of the phosphate stretching vibrations and of the in-plane double bond vibrations of the bases. We show that it is feasible to obtain IR as well as Raman spectra of small crystals of oligonucleotides and that this is a good method of identifying all of the different conformations that may be in the crystal.  相似文献   

2.
The self-complementary dodecamer d(CGCAAATTTGCG) crystallizes as a double helix of the B form and manifests a Raman spectrum with features not observed in Raman spectra of either DNA solutions or wet DNA fibers. A number of Raman bands are assigned to specific nucleoside sugar and phosphodiester conformations associated with this model B-DNA crystal structure. The Raman bands proposed as markers of the crystalline B-DNA structure are compared and contrasted with previously proposed markers of Z-DNA and A-DNA crystals. The results indicate that the three canonical forms of DNA can be readily distinguished by Raman spectroscopy. However, unlike Z-DNA and A-DNA, which retain their characteristic Raman fingerprints in aqueous solution, the B-DNA Raman spectrum is not completely conserved between crystal and solution states. The Raman spectra reveal greater heterogeneity of nucleoside conformations (sugar puckers) in the DNA molecules of the crystal structure than in those of the solution structure. The results are consistent with conversion of one-third of the dG residues from the C2'-endo/anti conformation in the solution structure to another conformation, deduced to be C1'-exo/anti, in the crystal. The dodecamer crystal also exhibits unusually broad Raman bands at 790 and 820 cm-1, associated with the geometry of the phosphodiester backbone and indicating a wider range of (alpha, zeta) backbone torsion angles in the crystal than in the solution structure. The results suggest that backbone torsion angles in the CGC and GCG sequences, which flank the central AAATTT sequence, are significantly different for crystal and solution structures, the former containing the greater diversity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Y Wang  G A Thomas  W L Peticolas 《Biochemistry》1987,26(16):5178-5186
A laser Raman study has been made on the conformation of a series of self-complementary octameric deoxynucleotides that contain all four canonical deoxynucleotide bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] in order to determine which sequences will crystallize in the Z form and which sequences will go into the Z form in aqueous solution at high salt concentrations (4-6 M NaCl). All four octadeoxynucleotides, d(TGCGCGCA) (I), d(CACGCGTG) (II), d(CGTGCACG) (III), and d(CGCATGCG) (IV), have been crystallized from low-salt solutions. The Raman spectra of microcrystals show that I, II, and IV crystallize in a rigorous Z form while III crystallizes in the B form. Sequences I and II go into a Z form in 4-6 M NaCl solution at 0 degrees C while sequences III and IV remain in the B form in 6 M salt. There are substantial differences in the Raman spectra of oligonucleotides in the Z form found in the crystal and in high-salt solutions. The Raman spectra of the Z forms in 6 M NaCl solution at 0 degrees C are not linear combinations of the Raman spectra of the complete Z form in the crystal and the complete B form in low-salt solutions. The terminal residues of these oligomers do not appear to be in a strict Z form. A detailed analysis of the ring puckers and syn/anti conformation for all of the residues both in solution and in the crystal has been made.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The Z-DNA crystal structures of d(CGCGTG) and d(CGCGCG) are compared by laser Raman spectroscopy. Raman bands originating from vibrations of the phosphodiester groups and sensitive to the DNA backbone conformation are similar for the two structures, indicating no significant perturbation to the Z-DNA backbone as a result of the incorporation of G.T mismatches. Both Z structures also exhibit Raman markers at 625 and 670 cm-1, assigned respectively to C3'-endo/syn-dG (internal) and C2'-endo/syn-dG conformers (3' terminus). Additional Raman intensity near 620 and 670 cm-1 in the spectrum of the d(CGCGTG) crystal is assigned to C4'-exo/syn-dG conformers at the mismatch sites (penultimate from the 5' terminus). A Raman band at 1680 cm-1, detected only in the d(CGCGTG) crystal, is assigned to the hydrogen-bonded dT residues and is proposed as a definitive marker of the Z-DNA wobble G.T pair. For aqueous solutions, the Raman spectra of d(CGCGTG) and d(CGCGCG) are those of B-DNA, but with significant differences between them. For example, the usual B-form marker band at 832 cm-1 in the spectrum of d(CGCGTG) is about 40% less intense than the corresponding band in the spectrum of d(CGCGCG), and the former structure exhibits a companion band at 864 cm-1 not observed for d(CGCGCG). The simplest interpretation of these results is that the conventional B-form OPO geometry occurs for only 6 of the 10 OPO groups of d(CGCGTG). The remaining four OPO groups, believed to be those at or near the mismatch site, are in an "unusual B" conformation which generates the 864 cm-1 band.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In order to determine the sequence dependence of the conformation of deoxynucleotides, Raman spectra have been obtained for the following oligodeoxynucleotides in aqueous salt solutions and in crystals: d(CpG)(I), d(TGCGCGCA)(II), d(CACGCGTG)(III), d(CGTGCACG)(IV), d(CGCATGCG)(V), d(ACGCGCGT)(VI), d(CGCGTACGCG)(VII), d(CGCACGTGCG)(VIII) and d(CGTGCGCACG)(IX), d(GCTATAGC) (X), d(GCATATGC) (XI), d(GGTATACC) (XII) and d(GGATATCC) (XIII). The normal B type conformation is observed for all the oligomer DNA's at low salt (0.1-1.0 M NaCl) concentration in the temperature range of 0-25 degrees C. It was considered possible that all of the first nine oligomers could go into the Z form in aqueous high salt (5.0-6.0 M NaCl) solutions, and under these conditions the last four were considered candidates to go into the A form. The B-type conformation was found to exist in high salt solutions for (I), (IV), (V), (VI), (X), (XI) and (XIII); the Z or partial Z conformation appears in high salt solution for the oligomers, (II), (III), (VII), (VIII) and (IX); an A or partial A conformation appears in high salt solution for (XII). In the crystalline state, (IV), (VIII), (X), and (XI) stay in the B-form and all of the other oligomers adopt the complete Z-form except for (XII) which crystallizes in the A form. In both the crystal and in aqueous solutions, the identification of the conformation genus was made by means of Raman spectroscopy. In the crystal of (I), grown at pH7.0, guanosine is found to be in C3'-endo/syn conformation and cytidine in C2'-endo/anti, which may be taken as the ideal building block of the typical Z conformation. At pH4, (I) crystallizes in a conformation similar to the B genus. A study of the thermally induced B to Z transition has been carried out for (II) and (III). Based on the analysis of Raman spectra of the alternating pyrimidine-purine oligomers which might be expected to go into the Z form, the tendency for these oligonucleotides to adopt the Z form can be ranked as: d(CGCGCGCG) greater than (II) greater than (III) greater than (V) approximately (VI) greater than (IV) for octamers and (VII) greater than (VIII) greater than (IX) for the decamers. Similarly, those oligomers which might have a tendency to go into the A form could be ranked as (XII) greater than (XIII) approximately (X) greater than (XI). These data should provide help in formulating rules for predicting the sequence dependence of the B to A and B to Z transitions. Some possible rules are explored, but precautions should be taken.  相似文献   

6.
Phase-sensitive two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 in aqueous deuterium oxide solution at four mixing times were quantified to give all nonoverlapping cross-peak intensities. A structural model for [d(GGTATACC)]2 was built in which the GG- and -CC moieties were in the B-DNA form, while the middle -TATA- moiety was in the wrinkled-D form (BDB model). This model was subjected to energy refinement by molecular mechanics calculations with the program AMBER. Counterions (Na+) were added to neutralize the charges, and water molecules were placed bridging across the minor groove. A complete relaxation matrix analysis was used to calculate two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 from the above models (before and after energy refinement) and from four other [d(GGTATACC)]2 structural models: regular A, crystalline A, regular B, and energy-minimized B. Among them, the energy-minimized BDB model yielded a set of theoretical spectra that gave the best fit to the experimental spectra. It was also the energetically most stable. Therefore, it is a good representation of the ensemble- and time-averaged structure of the octamer in solution. This model has backbone torsion angles similar to those of B-form DNA in the GG- and -CC moieties and torsion angles similar to those of wrinkled D form DNA in the -TATA- moiety. The base stacking and base pairing are not interrupted at the junctions between the two structural moieties. Its minor groove is narrower than that of B DNA, and the solvent-accessible surface of the minor groove forms a closed hydration tunnel in the middle -TATA- segment.  相似文献   

7.
Raman spectra of the DNA binding site for cro repressor protein were obtained in the presence and absence of bound cro protein. The 17 base pair fragment is a consensus sequence of the six cro binding sites in phage lambda, except that the second base to the right of the center of pseudosymmetry is altered. Analysis of the spectrum of the free DNA indicates that the molecule exists in a B-like conformation with deviations from the usual B form occurring mainly in the bands assigned to A-T vibrations. The spectrum of the bound DNA was obtained by subtracting the spectrum of free cro from the spectrum of the complex which was estimated to be 90% bound. The DNA undergoes significant structural changes upon binding to the protein; most notable of these changes is a destacking of the G-C bases reflected by increases in the 1240, 1262, and 1320 cm-1 bands. A decrease in the 1361 cm-1 band that occurs has also been assigned to a destacking in guanine bases. The appearance of a 705 cm-1 band and the decrease and downshift of the 670 cm-1 band are consistent with the appearance of A-like character in the A-T region of the binding site when the protein binds; however, the spectra indicate that the entire binding site remains in a distorted B-like conformation. We use the 705 cm-1 band to estimate A-like character because the 800-850 cm-1 region is obscured by interference from strong protein bands. Other shifts in both intensity and position cannot be assigned to characteristic changes in conformation and therefore must be attributed to the protein influencing the structure in a novel way.  相似文献   

8.
Form of DNA and the nature of interactions with proteins in chromatin.   总被引:15,自引:10,他引:5       下载免费PDF全文
Studies of native chromatins and of isolated nucleosomes (from calf thymus) show that the DNA is in the B form or modified B form. This was determined by Raman spectroscopy of chromatins, of nucleosomes (from calf thymus) and of DNA fibres and directly correlated with X-ray diffraction studies. The Raman spectra of three forms of DNA (A, B and C) have been characterized in fibres both by X-ray diffraction and Raman spectroscopy on the same sample. In particular, the Raman spectrum of the C form of DNA is characterized by a band of about 870 cm(-1). For the first time, chromatins of different origins with increasing content of non-histone proteins have been investigated by Raman spectroscopy. The site of interaction of the non-histone proteins appears to involve the N7 position of guanine while the histone core does not interact at this site. It is proposed that the mechanism of specific recognition in chromatin involves the large groove.  相似文献   

9.
The decadeoxynucleotide d(AAAAATTTTT)2 in duplex form and the double-helical polynucleotide poly(dA).poly(dT) have been studied by Raman and infrared (IR) spectroscopy under a variety of environmental conditions. The IR spectra have been taken of cast films and compared to the IR spectra of the alternating poly(dA-dT), which shows clear B-genus and A-genus vibrational spectra under conditions of high (greater than 92%) and low (75%) relative humidity (RH). From the IR data, it is shown that d-(AAAAATTTTT)2 and poly(dA).poly(dT) adopt a B-genus conformation in films with high water content. When the relative humidity of the film is decreased, the IR spectra reflect a gradual evolution of the geometry of both d(AAAAATTTTT)2 and poly(dA).poly(dT) into a form intermediate between the B genus and A genus, but the IR spectrum of a pure A genus has not been obtained. In these DNAs at 75% RH, the IR bands of adenosine have the same frequencies as those found in poly(dA-dT) at 75% RH where the local furanose conformation is C3' endo/anti, but the thymidine frequencies do not resemble those of poly(dA-dT) at 75% RH but rather those of poly(dA-dT) at high humidities. It is concluded that both poly(dA).poly(dT) and d(AAAAATTTTT)2 adopt a fully heteronomous duplex geometry in cast films at low humidity. For studies in aqueous solution the Raman effect was employed. As a model for the heteronomous conformation in solution, the duplex poly(rA).poly(dT) was used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Both Raman spectra and X-ray diffraction patterns have been obtained from oriented fibers of sodium deoxyribonucleic acid (Na-DNA) as a function of salt content and relative humidity. We have confirmed the previously reported X-ray results that, for oriented fibers, the A-form always exists between 75 and 92% relative humidity and that the conformation will change to the B-form at 92% relative humidity only if an excess (3–5%) of added salt is present. Oriented fibers containing low amounts of added salt remain in the A-type conformation at 92% relative humidity and higher. An exact correlation has been found between the familiar A- and B-type X-ray diffraction patterns of DNA fibers and the Raman spectra previously reported without X-ray verification from this laboratory for the A- and B-forms. In particular, a band at 807 cm?1 was always present when a fiber showed the A-type diffraction pattern, and this band shifts to 790 cm?1 in the B-form. Using the Raman spectrum to determine the specific conformation of DNA in samples less amenable to X-ray analysis, we have studied the A ? Btransformation in unoriented fibrous masses of DNA and in concentrated, oriented gels. We find that in unoriented fibrous masses, the A ? B transition always occurs at 92% relative humidity even at very low salt concentration (0–4%). However, in oriented DNA gels at low salt, the A-form can persist as a metastable state to concentration as low as 20% DNA. The origin of the bands at 807 and 790 cm?1 and the possible biological implications of these findings are discussed.  相似文献   

11.
The self-complementary oligonucleotides [r(CGC)d(CGC)]2 and [d(CCCCGGGG)]2 in single-crystal and solution forms have been investigated by Raman spectroscopy. Comparison of the Raman spectra with results of single-crystal X-ray diffraction and with data from polynucleotides permits the identification of a number of Raman frequencies diagnostic of the A-helix structure for GC sequences. The guanine ring frequency characteristic of C3'-endo pucker and anti base orientation is assigned at 668 +/- 2 cm-1 for both dG and rG residues of the DNA/RNA hybrid [r(GCG)d(CGC)]2. The A-helix backbone of crystalline [r(GCG)d(CGC)]2 is altered slightly in the aqueous structure, consistent with the conversion of at least two residues to the C2'-endo/anti conformation. For crystalline [d(CCCCGGGG)]2, the Raman and X-ray data indicate nucleosides of alternating 2'-endo-3'-endo pucker sandwiched between terminal and penultimate pairs of C3'-endo pucker. The A-A-B-A-B-A-A-A backbone of the crystalline octamer is converted completely to a B-DNA fragment in aqueous solution with Raman markers characteristic of C2'-endo/anti-G (682 +/- 2) and the B backbone (826 +/- 2 cm-1). In the case of poly(dG).poly(dC), considerable structural variability is detected. A 4% solution of the duplex is largely A DNA, but a 2% solution is predominantly B DNA. On the other hand, an oriented fiber drawn at 75% relative humidity reveals Raman markers characteristic of both A DNA and a modified B DNA, not unlike the [d-(CCCCGGGG)]2 crystal. A comparison of Raman and CD spectra of the aqueous [d(CCCCGGGG)]2 and poly(dG).poly(dC) structures suggests the need for caution in the interpretation of CD data from G clusters in DNA.  相似文献   

12.
Polarized Raman spectra have been obtained from single microcrystals of the duplex of the decamer d(A5T5)2 using a Raman microscope. This is the first report of Raman spectra from a crystal of a deoxyoligomer that contains only long, nonalternating sequences of adenine and thymine. Sequences containing d(A)n and d(T)n are of interest in view of recent suggestions that they induce bends in DNA and that they might exist in a nonstandard B-conformation. Polarized Raman spectra of a crystal of d(pTpT) have also been obtained. Both crystals display Raman bands whose intensities are very sensitive to the orientation of the crystal with respect to the direction of polarization of the incident laser beam. These spectra indicate that the helical axes of the oligonucleotides are parallel to the long axes of the crystals and that the d(A5T5)2 is not appreciably bent in the crystal. The Raman spectrum from the d(pTpT) crystal indicates that all of the furanose ring puckers are in a C2′-endo configuration since only the C2′-endo marker band at 835 ± 5 cm?1 is present. Crystals of d(A5T5)2 show measurable Raman intensities in both the 838- and 816-cm?1 bands. This indicates the presence of both the C2′-endo and C3′-endo, or possibly other non-C2′-endo, furanose conformations. The 816-cm?1 band is weak so that only a small fraction of the residues are estimated to be in the non-C2′-endo conformation. In both the d(pTpT) and d(A5T5)2 crystals the intensity of the bands due to vibrations of the backbone show only a small dependence on orientation of the crystals. This result is explained by the low symmetry of the puckered sugar rings. It is concluded that Raman spectra obtained from oligonucleotide crystals in which the orientation of the crystal axes to the laser polarization is not carefully controlled may contain intensity artifacts that are due to polarization effects.  相似文献   

13.
Raman spectra were obtained from aqueous solutions of the deoxyoligonucleotide d(CGCGAATTCGCG)2 (I), which has been suggested as a model for B-type DNA conformation. These spectra were compared with the Raman spectra of the aqueous solutions of several DNAs of natural origin taken under identical solution conditions. Since the model sequence has a high percent GC (66%), the Raman spectrum was compared with the Raman spectrum of the DNA from Micrococcus lysodeikticus (72% GC), and the spectra of the two different DNAs were found to be rather similar in both 50 mM salt and 6 M salt solutions. Computer-aided band-shape analysis of the backbone vibrational region of the Raman spectra shows the existence of several bands corresponding to different furanose ring puckers. This appears to indicate a heterogeneity of furanose ring pucker in both the model dodecamer and the native DNA. Significant differences were found in the intensity of the conformational marker band at 810 cm-1, which indicates corresponding differences in furanose ring pucker heterogeneities in these two high GC content DNAs. The Raman spectrum of the dodecamer (I) was used to analyze the Raman spectrum of the DNA inside the head of living intact salmon sperm. Sperm spectra were taken with both our conventional Raman spectrograph and a newly developed intracavity laser Raman microscope system. Although the DNA in the sperm head is required by packing considerations to be in a highly compact and condensed state, the Raman spectra of the intact sperm are almost identical with that of the model dodecamer (I) if the difference in base composition is taken into account.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 A resolution.   总被引:4,自引:0,他引:4  
The crystal structure of a complex between DNase I and the self-complementary octamer duplex d(GGTATACC)2 has been solved using the molecular replacement method and refined to a crystallographic R-factor of 18.8% for all data between 6.0 and 2.3 A resolution. In contrast to the structure of the DNase I-d(GCGATCGC)2 complex solved previously, the DNA remains uncleaved in the crystal. The general architecture of the two complexes is highly similar. DNase I binds in the minor groove of a right-handed DNA duplex, and to the phosphate backbones on either side over five base-pairs, resulting in a widening of the minor groove and a concurrent bend of the DNA away from the bound enzyme. There is very little change in the structure of the DNase I on binding the substrate. Many other features of the interaction are conserved in the two complexes, in particular the stacking of a deoxyribose group of the DNA onto the side-chain of a tyrosine residue (Y76), which affects the DNA conformation and the binding of an arginine side-chain in the minor groove. Although the structures of the DNA molecules appear at first sight rather similar, detailed analysis reveals some differences that may explain the relative resistance of the d(GGTATACC)2 duplex to cleavage by DNase I: whilst some backbone parameters are characteristic of a B-conformation, the spatial orientation of the base-pairs in the d(GGTATACC)2 duplex is close to that generally observed in A-DNA. These results further support the hypothesis that the minor-groove width and depth and the intrinsic flexibility of DNA are the most important parameters affecting the interaction. The disposition of residues around the scissile phosphate group suggests that two histidine residues, H134 and H252, are involved in catalysis.  相似文献   

15.
Present results provide direct evidence of the nature of a conformational change in DNA when nucleosomes are formed from core histones and poly [d(A-T)]. First, we have found some features which have characteristic aspects of the A like conformation of DNA. Thus, an increased contribution due to a sugar conformation close to C3'-endo puckering is detected in the Raman spectra. In addition, the circular dichroism (C.D.) spectra of reconstituted chromatin with poly [d(A-T)] exhibits an increases intensity at about 262 nm. A second feature acquired by poly [d(A-T)] in nucleosome formation from core histones is related to the presence of a negative band at about 280 nm in the C.D.spectra. The nature of this change is correlated with a DNA conformation characterized by a decreased number of base pairs per turn (28,29). This indicates that these two features of reconstituted nucleosomes reflect the presence of two types of DNA conformations, which overall form is of the B type (22,36).  相似文献   

16.
Introduction of the bulky 8-bromo substituent into adenine residues of polynucleotides has strikingly different consequences in the deoxy- and ribopolynucleotide series. Poly(r8BrA) was found in earlier studies to form a very stable double-helical self-structure but not to undergo interaction with potentially complementary polynucleotides. We find that poly(d8BrA), in contrast, does not form an ordered self-structure in 0.1 M Na+ but appears to exist as an electrostatically expanded rigid rod with unusual circular dichroism (CD) properties at very low ionic strength. The deoxy polymer, moreover, readily forms double helices with either deoxy or ribo pyrimidine polynucleotides, studied by UV, CD, and IR spectroscopy. These complexes are destabilized, relative to those formed by poly(dA), possibly because energy is needed to convert the purine residues from a more stable syn to an anti conformation, required for heteroduplex formation. The CD spectrum of (d8BrA)n X (dT)n is similar to that of B DNA. The deoxy-ribo hybrids (d8BrA)n X (rU)n and (d8BrA)n X (rBrU)n have CD spectra resembling those of A DNA or RNA. Unlike other deoxy-deoxy pairs (d8BrA)n X (dBrU)n, however, has a CD spectrum resembling RNA and other helices having the A form.  相似文献   

17.
We have obtained low frequency (less than 200 cm-1) Raman spectra of calf-thymus DNA and poly(rI).poly(rC) as a function of water content and counterion species and of d(GGTATACC)2 and d(CGCGAATTCGCG)2 crystals. We have found that the Raman scattering from water in the first and second hydration shells does not contribute directly to the Raman spectra of DNA. We have determined the number of strong Raman active modes by comparing spectra for different sample orientations and polarizations and by obtaining fits to the spectra. We have found at least five Raman active modes in the spectra of A- and B-DNA. The frequencies of the modes above 40 cm-1 do not vary with counterion species, and there are only relatively small changes upon hydration. These modes are, therefore, almost completely internal. The mode near 34 cm-1 in A-DNA is mostly internal, whereas the mode near 25 cm-1 is dominated by interhelical interactions. The observed intensity changes upon dehydration were found to be due to the decrease in interhelical distance. Polymer length appears to play a role in the lowest frequency modes.  相似文献   

18.
Melting and premelting phenomenon in DNA by laser Raman scattering.   总被引:14,自引:0,他引:14  
Raman spectra of DNA from calf thymus DNA have been taken over a wide range of temperatures (25°–95°) in both D2O and H2O. A study of the temperature dependence of the Raman spectra shows that the temperature profiles of the intensities and frequencies of the various bands fall into four different categories: (1) base bands that show a reversible increase in intensity prior to the melting region, i.e., a definite premelting phenomenon; (2) base bands that show little or no temperature dependence; (3) deoxyribose-phosphate backbone vibrations that show no temperature dependence up to the melting region, at which point large decreases in intensity occur; and (4) slow frequency changes in certain in-plane vibrations of guanine and adenine due to deuteration of the C-8 hydrogen of these purines in D2O. Certain Raman bands arising from each of the four bases, adenine, thymine, guanine, and cytosine have been found to undergo a gradual increase in intensity prior to the melting region at which point large, abrupt increases in intensity occur. The carbonyl stretching band of thymine, involved in the interbase hydrogen bonding actually undergoes both a gradual shift to a lower frequency as well as an increase in intensity. These changes provide evidence that some change in the geometry of the bases relative to each other begins to occur around 50°C, well below the melting region of 70°–85°C. From the spectra taken at various temperatures, the DNA appears to remain in the B conformation until the melting point is reached, at which time the DNA progresses into a disordered random-coil form. No A-form conformation is found either in the premelting or the melting region.  相似文献   

19.
W L Peticolas 《Biochimie》1975,57(4):417-428
The Raman spectra of biological macromolecules arise from molecular vibrations of either the backbone chains or the side chains. The frequencies of the Raman bands lie in a region between 200 cm-1 and 3000 cm-1. From certain frequencies of the vibrations of the backbone chains one can determine the conformation or secondary structure of a macromolecule. Thus for polypeptides and proteins the frequencies of the Amide I and Amide III vibrations allow one to determine the averge conformation of their backbone chain. In polynucleotides and nucleic acids, the frequency of the phosphate diester stretch of the phosphate furanose chain varies between 814 cm-1 for A conformation and 790 cm-1 for B conformation. Raman spectra of the bases in nucleic acids can be used to determine base stacking and hydrogen bonding interactions. Thus Raman spectroscopy is an important tool for determining the conformation structure of proteins and nucleic acids.  相似文献   

20.
Takeuchi H 《Biopolymers》2003,72(5):305-317
The Raman spectrum of a protein contains a wealth of information on the structure and interaction of the protein. To extract the structural information from the Raman spectrum, it is necessary to identify and interpret the marker bands that reflect the structure and interaction in the protein. Recently, new Raman structural markers have been proposed for the tryptophan and histidine side chains by examining the spectra-structure correlations of model compounds. Raman structural markers are now available for the conformation, hydrogen bonding, hydrophobic interaction, and cation-pi interaction of the indole ring of Trp. For His, protonation, tautomerism, and metal coordination of the imidazole ring can be studied by using Raman markers. The high-resolution X-ray crystal structures of proteins provide the basis for testing and modifying the Raman structural markers of Trp and His. The structures derived from Raman spectra are generally consistent with the X-ray crystal structures, giving support for the applicability of most Raman structural makers. Possible modifications and limitations to some marker bands are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号