首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The virulence of different pulsed-field gel electrophoresis (PFGE) types of Listeria monocytogenes was examined by monitoring their ability to invade Caco-2 cells. Strains belonging to seven different PFGE types originating from both foods and humans were included. No significant differences in invasiveness were detected between strains isolated from humans and those isolated from food. Strains belonging to PFGE type 1 expressed a significantly lower ability to invade cells compared to strains belonging to other PFGE types. Although strains of PFGE type 2 also seemed to invade at a low level, this was not significant in the present study. PFGE types 1 and 2 as well as type 14 are more frequently found in food than the four other PFGE types examined and moreover have a relatively low prevalence in humans compared to their prevalence in food. Thus, the hypothesis that some PFGE types are less virulent than others is supported by this study showing that certain PFGE types of L. monocytogenes commonly found in food are less invasive than others to Caco-2 cells. In contrast to the differences in invasion, identical intracellular growth rates between the different PFGE types were observed. In vivo studies of the actual ability of the strains to invade the liver and spleen of cimetidine-treated rats following an oral dose of 109 L. monocytogenes cells were performed for isolates of PFGE types 1, 2, 5, and 15. After 2 days, equal amounts of bacteria were observed in the liver and spleen of the rats for any of the PFGE types tested.  相似文献   

2.
Campylobacter spp. are a leading cause of bacterial gastroenteritis. Foods of animal origin, particularly undercooked poultry, are common sources of Campylobacter species associated with disease in humans. A collection of 110 Campylobacter jejuni and 31 C. coli human and environmental isolates from different Ontario, Canada, abattoirs were analyzed by pulsed-field gel electrophoresis, fatty acid profile typing, and biotyping. Previously collected serotyping data for the same isolates were also analyzed in this study. Pulsed-field gel electrophoresis was found to be the most discriminatory of the typing methods, followed by serotyping, fatty acid profile typing, and biotyping. A wide variety of typing profiles were observed within the isolates, suggesting that several different Campylobacter sp. strains were present within the abattoirs.  相似文献   

3.
Salmonellosis is one of the most important foodborne diseases affecting humans. To characterize the relationship between Salmonella causing human infections and their food animal reservoirs, we compared pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility patterns of non-typhoidal Salmonella isolated from ill humans in Pennsylvania and from food animals before retail. Human clinical isolates were received from 2005 through 2011 during routine public health operations in Pennsylvania. Isolates from cattle, chickens, swine and turkeys were recovered during the same period from federally inspected slaughter and processing facilities in the northeastern United States. We found that subtyping Salmonella isolates by PFGE revealed differences in antimicrobial susceptibility patterns and, for human Salmonella, differences in sources and invasiveness that were not evident from serotyping alone. Sixteen of the 20 most common human Salmonella PFGE patterns were identified in Salmonella recovered from food animals. The most common human Salmonella PFGE pattern, Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS), was associated with more cases of invasive salmonellosis than all other patterns. In food animals, this pattern was almost exclusively (99%) found in Salmonella recovered from chickens and was present in poultry meat in every year of the study. Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS) was associated with susceptibility to all antimicrobial agents tested in 94.7% of human and 97.2% of food animal Salmonella isolates. In contrast, multidrug resistance (resistance to three or more classes of antimicrobial agents) was observed in five PFGE patterns. Typhimurium patterns JPXX01.0003 (JPXX01.0003 ARS) and JPXX01.0018 (JPXX01.0002 ARS), considered together, were associated with resistance to five or more classes of antimicrobial agents: ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline (ACSSuT), in 92% of human and 80% of food animal Salmonella isolates. The information from our study can assist in source attribution, outbreak investigations, and tailoring of interventions to maximize their impact on prevention.  相似文献   

4.
Eight strains of the entomopathogen Bacillus popilliae were analyzed by pulsed-field gel electrophoresis, and genomic size estimates of ^sim2,600 to 3,500 kb were obtained. The type strain, ATCC 14706, had a genomic size of 3,395 kb. For the six New Zealand isolates, the degree of similarity in the pulsed-field gel electrophoresis fingerprints may correlate with the geographical closeness of the sites of isolation. The plasmid profiles of the New Zealand isolates were also compared; four of the six strains carry plasmids in the 3.6- to 9.7-kb size range.  相似文献   

5.
A collection of 81 isolates of enteropathogenic Escherichia coli (EPEC) was obtained from samples of bulk tank sheep milk (62 isolates), ovine feces (4 isolates), sheep farm environment (water, 4 isolates; air, 1 isolate), and human stool samples (9 isolates). The strains were considered atypical EPEC organisms, carrying the eae gene without harboring the pEAF plasmid. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 19 sequence types (ST) were detected, with none of them having been previously reported for atypical EPEC. The most frequent ST included 41 strains isolated from milk and human stool samples. Genetic typing by pulsed-field gel electrophoresis (PFGE) resulted in 57 patterns which grouped in 24 clusters. Comparison of strains isolated from the different samples showed phylogenetic relationships between milk and human isolates and also between milk and water isolates. The results obtained show a possible risk for humans due to the presence of atypical EPEC in ewes'' milk and suggest a transmission route for this emerging pathogen through contaminated water.  相似文献   

6.
Approximately 550 to 600 yersiniosis patients are reported annually in Sweden. Although pigs are thought to be the main reservoir of food-borne pathogenic Yersinia enterocolitica, the role of pork meat as a vehicle for transmission to humans is still unclear. Pork meat collected from refrigerators and local shops frequented by yersiniosis patients (n = 48) were examined for the presence of pathogenic Yersinia spp. A combined culture and PCR method was used for detection, and a multiplex PCR was developed and evaluated as a tool for efficient identification of pathogenic food and patient isolates. The results obtained with the multiplex PCR were compared to phenotypic test results and confirmed by pulsed-field gel electrophoresis (PFGE). In all, 118 pork products (91 raw and 27 ready-to-eat) were collected. Pathogenic Yersinia spp. were detected by PCR in 10% (9 of 91) of the raw pork samples (loin of pork, fillet of pork, pork chop, ham, and minced meat) but in none of the ready-to-eat products. Isolates of Y. enterocolitica bioserotype 4/O:3 were recovered from six of the PCR-positive raw pork samples; all harbored the virulence plasmid. All isolates were recovered from food collected in shops and, thus, none were from the patients' home. When subjected to PFGE, the six isolates displayed four different NotI profiles. The same four NotI profiles were also present among isolates recovered from the yersiniosis patients. The application of a multiplex PCR was shown to be an efficient tool for identification of pathogenic Y. enterocolitica isolates in naturally contaminated raw pork.  相似文献   

7.
The molecular epidemiology of 142 isolates of Salmonella enterica serovar Typhimurium from avian wildlife, domestic animals, and the environment in Norway was investigated using pulsed-field gel electrophoresis (PFGE) and computerized numerical analysis of the data. The bacterial isolates comprised 79 isolates from wild-living birds, including 46 small passerines and 26 gulls, and 63 isolates of nonavian origin, including 50 domestic animals and 13 environmental samples. Thirteen main clusters were discernible at the 90% similarity level. Most of the isolates (83%) were grouped into three main clusters. These were further divided into 20 subclusters at the 95% similarity level. Isolates from passerines, gulls, and pigeons dominated within five subclusters, whereas isolates from domestic animals and the environment belonged to many different subclusters with no predominance. The results support earlier results that passerines constitute an important source of infection to humans in Norway, whereas it is suggested that gulls and pigeons, based on PFGE analysis, represent only a minor source of human serovar Typhimurium infections. Passerines, gulls, and pigeons may also constitute a source of infection of domestic animals and feed plants or vice versa. Three isolates from cattle and a grain source, of which two were multiresistant, were confirmed as serovar Typhimurium phage type DT 104. These represent the first reported phage type DT 104 isolates from other sources than humans in Norway.  相似文献   

8.
A total of 153 strains of Listeria monocytogenes isolated from different sources (72 from sheep, 12 from cattle, 18 from feedstuffs, and 51 from humans) in Spain from 1989 to 2000 were characterized by pulsed-field gel electrophoresis. The strains of L. monocytogenes displayed 55 pulsotypes. The 84 animal, 51 human, and 18 feedstuff strains displayed 31, 29, and 7 different pulsotypes, respectively, indicating a great genetic diversity among the Spanish L. monocytogenes isolates studied. L. monocytogenes isolates from clinical samples and feedstuffs consumed by the diseased animals were analyzed in 21 flocks. In most cases, clinical strains from different animals of the same flock had identical pulsotypes, confirming the existence of a listeriosis outbreak. L. monocytogenes strains with pulsotypes identical to those of clinical strains were isolated from silage, potatoes, and maize stalks. This is the first study wherein potatoes and maize stalks are epidemiologically linked with clinical listeriosis.  相似文献   

9.
We describe a study on the application of multilocus sequence typing for the analysis of Campylobacter jejuni and C. coli isolates from human domestically acquired infections in the Helsinki-Uusimaa area of Finland in 1996, 2002, and 2003. In addition, isolates from poultry meat and fecal samples of cattle from the seasonal peak (July to September) in 2003 were included in the study. In total, 361 Finnish C. jejuni and C. coli strains were typed. Sequence type 45 (ST-45) (45%), ST-21 (21%), and ST-677 (11%) clonal complexes were the most prevalent. The ST-45 and ST-677 complexes were overrepresented in comparison with previous studies. The longitudinal study revealed an association between C. coli (ST-828 complex) infection and elderly patients (≥60 years). Analysis of exposure factors, determined by a previous case-control study conducted during the seasonal peak in 2002, revealed that the ST-48 complex was significantly (P < 0.05) associated with the tasting or eating of raw minced meat. New and unassigned STs were associated with swimming in natural bodies of water, whereas the ST-677 complex was related to drinking nonchlorinated water from a small water plant or water from natural sources. The ST-45 complex was associated with contact with pet cats and dogs. In 2003, ST-45 occurrence was significantly associated with poultry whereas ST-50 was associated with isolates from humans. In contrast, ST-53, ST-58, ST-61, and ST-883 were significantly associated with isolates from cattle. Further studies are needed to reveal the significance of the observed associations.  相似文献   

10.
Genetic relatedness of enterococci from poultry litter to enterococci from nearby surface water and groundwater in the Lower Fraser Valley regions of British Columbia, Canada was determined. A new automated BOX-PCR and Pulsed-Field Gel Electrophoresis (PFGE) were used to subtype enterococcal isolates from broiler and layer litter and surface and groundwater. All surface water samples (n = 12) were positive for enterococci, as were 11% (3/28) of groundwater samples. Enterococcus faecium (n = 90) was isolated from all sources, while Enterococcus faecalis (n = 59) was isolated from all sources except layer litter. The majority of E. faecalis originated from broiler litter (28/59; 47.5%) while the majority of E. faecium were isolated from layer litter (29/90; 32.2%). E. faecalis grouped primarily by source using BOX-PCR. Isolates from water samples were dispersed more frequently among PFGE groups containing isolates from poultry litter. E. faecium strains were genetically diverse as overall clustering was independent of source by both molecular methods. Subgroups of E. faecium isolates based upon source (layer litter) were present in BOX-PCR groups. Three individual E. faecalis groups and two individual E. faecium groups were 100% similar using BOX-PCR; only one instance of 100% similarity among isolates using PFGE was observed. Although enterococci from litter and water sources were grouped together using BOX-PCR and PFGE, isolates originating from water could not be definitively identified as originating from poultry litter. Automation of BOX-PCR amplicon separation and visualization increased the reproducibility and standardization of subtyping using this procedure.  相似文献   

11.
Campylobacter jejuni is the most common cause of bacterial gastroenteritis in Luxembourg, with a marked seasonal peak during summer. The majority of these infections are thought to be sporadic, and the relative contribution of potential sources and reservoirs is still poorly understood. We monitored human cases from June to September 2006 (n = 124) by molecular characterization of isolates with the aim of rapidly detecting temporally related cases. In addition, isolates from poultry meat (n = 36) and cattle cecal contents (n = 48) were genotyped for comparison and identification of common clusters between veterinary and human C. jejuni populations. A total of 208 isolates were typed by sequencing the fla short variable region, macrorestriction analysis resolved by pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). We observed a high diversity of human strains during a given summer season. Poultry and human isolates had a higher diversity of sequence types than isolates of bovine origin, for which clonal complexes CC21 (41.6%) and CC61 (18.7%) were predominant. CC21 was also the most common complex found among human isolates (21.8%). The substantial concordance between PFGE and MLST results for this last group of strains suggests that they are clonally related. Our study indicates that while poultry remains an important source, cattle could be an underestimated reservoir of human C. jejuni cases. Transmission mechanisms of cattle-specific strains warrant further investigation.  相似文献   

12.
Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell''s Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance.  相似文献   

13.
Various molecular systems are available for epidemiological, genetic, evolutionary, taxonomic and systematic studies of innumerable fungal infections, especially those caused by the opportunistic pathogen C. albicans. A total of 75 independent oral isolates were selected in order to compare Multilocus Enzyme Electrophoresis (MLEE), Electrophoretic Karyotyping (EK) and Microsatellite Markers (Simple Sequence Repeats - SSRs), in their abilities to differentiate and group C. albicans isolates (discriminatory power), and also, to evaluate the concordance and similarity of the groups of strains determined by cluster analysis for each fingerprinting method. Isoenzyme typing was performed using eleven enzyme systems: Adh, Sdh, M1p, Mdh, Idh, Gdh, G6pdh, Asd, Cat, Po, and Lap (data previously published). The EK method consisted of chromosomal DNA separation by pulsed-field gel electrophoresis using a CHEF system. The microsatellite markers were investigated by PCR using three polymorphic loci: EF3, CDC3, and HIS3. Dendrograms were generated by the SAHN method and UPGMA algorithm based on similarity matrices (SSM). The discriminatory power of the three methods was over 95%, however a paired analysis among them showed a parity of 19.7-22.4% in the identification of strains. Weak correlation was also observed among the genetic similarity matrices (SSMMLEE × SSMEK × SSMSSRs). Clustering analyses showed a mean of 9 ± 12.4 isolates per cluster (3.8 ± 8 isolates/taxon) for MLEE, 6.2 ± 4.9 isolates per cluster (4 ± 4.5 isolates/taxon) for SSRs, and 4.1 ± 2.3 isolates per cluster (2.6 ± 2.3 isolates/taxon) for EK. A total of 45 (13%), 39 (11.2%), 5 (1.4%) and 3 (0.9%) clusters pairs from 347 showed similarity (SJ) of 0.1-10%, 10.1-20%, 20.1-30% and 30.1-40%, respectively. Clinical and molecular epidemiological correlation involving the opportunistic pathogen C. albicans may be attributed dependently of each method of genotyping (i.e., MLEE, EK, and SSRs) supplemented with similarity and grouping analysis. Therefore, the use of genotyping systems that give results which offer minimum disparity, or the combination of the results of these systems, can provide greater security and consistency in the determination of strains and their genetic relationships.  相似文献   

14.
15.
A total of 75 Vibrio anguillarum serogroup O1 strains were studied with respect to their plasmid contents, ribotypes, and pulsed-field gel electrophoresis (PFGE) patterns. Eight plasmid profiles and six ribotypes were demonstrated, and one profile was dominant by both typing methods. In contrast, PFGE had very high discriminatory power, demonstrating 35 profiles. On the basis of PFGE patterns, a similarity matrix and a dendrogram were constructed. The results indicated that Scandinavian strains and southern European isolates (with some exceptions) belong to two different clonal lineages. A few strains from the United States and United Kingdom deviated considerably from each other and from Scandinavian and southern European strains.  相似文献   

16.
Although campylobacters have been isolated from a wide range of animal hosts, the association between campylobacters isolated from humans and animals in the farm environment is unclear. We used flagellin gene typing and pulsed-field gel electrophoresis (PFGE) to investigate the genetic diversity among isolates from animals (cattle, sheep, and turkey) in farm environments and sporadic cases of campylobacteriosis in the same geographical area. Forty-eight combined fla types were seen among the 315 Campylobacter isolates studied. Six were found in isolates from all four hosts and represented 50% of the total number of isolates. Seventy-one different SmaI PFGE macrorestriction profiles (mrps) were observed, with 86% of isolates assigned to one of 29 different mrps. Fifty-seven isolates from diverse hosts, times, and sources had an identical SmaI mrp and combined fla type. Conversely, a number of genotypes were unique to a particular host. We provide molecular evidence which suggests a link between campylobacters in the farm environment with those causing disease in the community.  相似文献   

17.
The genomic stability of 12 Campylobacter jejuni strains consisting of two groups of human and chicken isolates was studied by analysis of their PFGE (pulsed-field gel electrophoresis) patterns after passage through newly hatched chicks’ intestines. The patterns of SmaI, SalI, and SacII digests remained stable after intestinal passage, except for those of two strains. One originally human strain, FB 6371, changed its genotype from II/A (SmaI/SacII) to I/B. Another strain, BTI, originally isolated from a chicken, changed its genotype from I/B to a new genotype. The genomic instability of the strains was further confirmed by SalI digestion and ribotyping of the HaeIII digests. In addition, heat-stable serotype 57 of strain FB 6371 changed to serotype 27 in all isolates with new genotypes but remained unchanged in an isolate with the original genotype. Serotype 27 of strain BTI remained stable. Our study suggests that during intestinal colonization, genomic rearrangement, as demonstrated by changed PFGE and ribopatterns, may occur.  相似文献   

18.
Salmonella enterica isolates were recovered from swine at a collaborating processing plant over a 2-month period in the spring of 2000. In the present study, molecular subtyping by pulsed-field gel electrophoresis (PFGE) was performed on the 581 confirmed Salmonella isolates from the 84 Salmonella-positive samples obtained from the previous study. A total of 32 different PFGE pulsotypes were observed visually, and a BioNumerics software analysis clustered those pulsotypes into 12 PFGE groups. The B, F, and G groups predominated throughout the sampling period and were isolated from 39, 22, and 13% of the swine, respectively. In addition, multiple isolates were obtained from 67 of the 84 Salmonella-positive samples, and subtyping revealed multiple PFGE profiles in 35 of these 67 (62%) samples. Both carcass and fecal isolates of Salmonella were recovered from 13 swine, resulting in “matched” samples. Molecular typing of the 252 isolates recovered from the matched samples revealed that 7 (54%) of the 13 carcasses were contaminated with Salmonella pulsotypes that were not isolated from the feces of the same animal. Conversely, from 6 of the 13 (46%) matched animals, Salmonella clonal types were isolated from the feces that were not isolated from the carcass of the same animal. These data establish that each lot of swine introduces new contaminants into the plant environment and that swine feces from one animal can contaminate many carcasses. In addition, these results indicate that the examination of multiple Salmonella isolates from positive samples is necessary to determine the variety of potential contaminants of swine carcasses during slaughter and processing.  相似文献   

19.
The distribution of Clostridium botulinum serotypes A, B, E, and F in Finnish trout farms was examined. A total of 333 samples were tested with a neurotoxin-specific PCR assay. C. botulinum type E was found in 68% of the farm sediment samples, in 15% of the fish intestinal samples, and in 5% of the fish skin samples. No other serotypes were found. The spore counts determined by the most-probable-number method were considerably higher for the sediments than for the fish intestines and skin; the average values were 2,020, 166, and 310 C. botulinum type E spores kg−1, respectively. The contamination rates in traditional freshwater ponds and marine net cages were high, but in concrete ponds equipped with sediment suction devices the contamination rates were significantly lower. Pulsed-field gel electrophoresis (PFGE) typing of 42 isolates obtained in this survey and 12 North American reference strains generated 28 pulsotypes upon visual inspection, suggesting that there was extensive genetic diversity and that the discriminatory power of PFGE typing in C. botulinum type E was high. A numerical analysis of SmaI-XmaI macrorestriction profiles confirmed these findings, as it divided the 54 isolates into 15 clusters at a similarity level of 76%. For this material, this level of similarity corresponded to a three-band difference in the macrorestriction profiles, which indicated that there is no genotypic proof of a close epidemiological relationship among the clusters.  相似文献   

20.
To overcome some of the deficiencies with current molecular typing schema for Campylobacter spp., we developed a prototype PCR binary typing (P-BIT) approach. We investigated the distribution of 68 gene targets in 58 Campylobacter jejuni strains, one Campylobacter lari strain, and two Campylobacter coli strains for this purpose. Gene targets were selected on the basis of distribution in multiple genomes or plasmids, and known or putative status as an epidemicity factor. Strains were examined with Penner serotyping, pulsed-field gel electrophoresis (PFGE; using SmaI and KpnI enzymes), and multilocus sequence typing (MLST) approaches for comparison. P-BIT provided 100% typeability for strains and gave a diversity index of 98.5%, compared with 97.0% for SmaI PFGE, 99.4% for KpnI PFGE, 96.1% for MLST, and 92.8% for serotyping. Numerical analysis of the P-BIT data clearly distinguished strains of the three Campylobacter species examined and correlated somewhat with MLST clonal complex assignations and with previous classifications of “high” and “low” risk. We identified 18 gene targets that conferred the same level of discrimination as the 68 initially examined. We conclude that P-BIT is a useful approach for subtyping, offering advantages of speed, cost, and potential for strain risk ranking unavailable from current molecular typing schema for Campylobacter spp.Campylobacter species, particularly C. jejuni subsp. jejuni (hereafter C. jejuni), represent the most commonly reported bacterial cause of gastroenteritis in humans in the developed world (47), with New Zealand having one of the highest rates of infection (55). The sheer scale of infection makes concerted epidemiological studies difficult, as does the extremely wide distribution of the organism, found in all major avian and mammalian food animals, their products, and indeed environments. Moreover, many Campylobacter spp. are susceptible to spontaneous genetic change through a variety of mechanisms that can result in conflicting data for genetic typing methods aiming to establish a molecular epidemiological link between strains (reviewed by On and colleagues [47]).The poor discrimination of phenotypic typing methods led to intense developments in molecular epidemiological tools for more accurate data. Although a wide range of genotypic methods have been described (47), two methods are now more commonly used by laboratories worldwide. The availability of standardized protocols for macrorestriction profiling with pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) have facilitated major contributions to our understanding of the epidemiology of these bacteria. Nonetheless, issues remain, notably relating to the speed, cost, and ease of data analysis from these methods. Furthermore, although MLST has proven useful in evaluating the original host of a given strain, no current methods provide information on the relative risk to human health from individual strains. Various studies, including those identifying stable clones found in humans and various animals as well as strain types only in a particular animal host (5, 13, 38, 48, 61), and whole-genome microarray-based comparisons revealing a correlation between genome content and stress survival (46) indicate that not all strains are of equal risk to humans.In this study, we designed a range of specific PCR assays and investigated the distribution of 68 genes associated with epidemicity factors in C. jejuni, to establish the basis of a novel PCR binary typing (P-BIT) system that is inexpensive, rapid, and highly portable. We compared our data with MLST and PFGE (using restriction enzymes SmaI and KpnI) results for the same isolates of C. jejuni (n = 58), C. coli (n = 2), and C. lari (n = 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号