首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The Arabidopsis gene Terminal Flower 1 (TFL1) controls inflorescence meristem identity. A terminal flower (tfl1) mutant, which develops a terminal flower at the apex of the inflorescence, was induced by transformation with T-DNA. Using a plant DNA fragment flanking the integrated T-DNA as a probe, a clone was selected from a wild-type genomic library. Comparative sequence analysis of this clone with an EST clone (129D7T7) suggested the existence of a gene encoding a protein similar to that encoded by the cen gene which controls inflorescence meristem identity in Antirrhinum. Nucleotide sequences of the region homologous to this putative TFL1 gene were compared between five chemically induced tfl1 mutants and their parental wild-type ecotypes. Every mutant was found to have a nucleotide substitution which could be responsible for the tfl1 phenotype. This result confirmed that the cloned gene is TFL1 itself. In our tfl1 mutant, no nucleotide substitution was found in the transcribed region of the gene, and the T-DNA-insertion site was located at 458 bp downstream of the putative polyadenylation signal, suggesting that an element important for expression of the TFL1 gene exists in this area. Received: 14 November 1996 / Accepted: 29 November 1996  相似文献   

3.
The gltA gene encoding a glutamate synthase (GOGAT) from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was cloned as a 6.6 kb HindIII-BamHI fragment. Sequence analysis indicates that gltA encodes a 481- amino acid protein (53 269 Da). The deduced amino acid sequence of KOD1-GltA includes conserved regions that are found in the small subunits of bacterial GOGAT: two cysteine clusters, an adenylate-binding consensus sequence and an FAD-binding consensus sequence. However, no sequences homologous to the large subunit of bacterial GOGAT were found in the upstream or downstream regions. In order to examine whether GltA alone can act as a functional GOGAT, GltA was overexpressed in Escherichia coli BL21 (DE3) cells using an expression plasmid. GltA was purified to homogeneity and shown to be functional as a homotetramer of approximately 205 kDa, which is equivalent to the molecular weight of the native GOGAT from KOD1, thus indicating that KOD1-GOGAT is the smallest known active GOGAT. GltA is capable of both glutamine-dependent and ammonia-dependent synthesis of glutamate. Synthesis of glutamate by KOD1-GltA required NADPH, indicating that this enzyme is an NADPH-GOGAT (EC 1.4.1.13). The optimum pH for both activities was 6.5. However, GltA exhibited different optimum temperatures for activity depending on the reaction assayed (glutamine-dependent reaction, 80° C; ammonia-dependent reaction, 90° C). Received: 30 October 1996 / Accepted: 13 January 1997  相似文献   

4.
Using AnCP (Aspergillus nidulans CCAAT-binding protein) as a CCAAT-specific binding factor model, the possibility that one factor is able to recognize CCAAT sequences in several different genes in A.␣nidulans was examined. DNase I protection analysis showed that AnCP specifically bound to CCAAT sequence-containing regions comprising 21 to 36 bp of the taa, amdS and gatA genes. Furthermore, replacement of the CCAAT sequence with CGTAA was found to abolish the binding of AnCP and to have an inhibitory effect on taa promoter activity. This clearly demonstrates a positive function of the CCAAT element. However, amylase was induced by starch and repressed by glucose in a CCAAT-box disruptant, as in wild-type cells. Received: 28 June 1996 / Accepted: 7 October 1996  相似文献   

5.
6.
In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Dal80, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence 5′ GATAA 3′. Gln3 and Gat1 act positively on gene expression whereas Dal80 and Deh1 act negatively. Expression of nitrogen catabolite pathway genes known to be regulated by these four regulators are glutamine, glutamate, proline, urea, arginine, GABA, and allantoine. In addition, the expression of the genes encoding the general amino acid permease and the ammonium permease are also regulated by these four regulatory proteins. Another group of genes whose expression is also regulated by Gln3, Gat1, Dal80, and Deh1 are some protease, CPS1, PRB1, LAP1, and PEP4, responsible for the degradation of proteins into amino acids thereby providing a nitrogen source to the cell. In this review, all known promoter sequences related to expression of nitrogen catabolite pathways are discussed as well as other regulatory proteins. Overview of metabolic pathways and promotors are presented.  相似文献   

7.
The organization of the actin cytoskeleton plays an integral role in cell morphogenesis of all eukaryotes. We have isolated a temperature-sensitive mutant in Schizosaccharomyces pombe, wat1-1, in which acting patches are delocalized, resulting in an elliptically shaped cell phenotype. Molecular cloning and DNA sequencing of wat1 + showed that the gene encodes a 314 residue protein containing WD-40 repeats. Cells lacking wat1 + are slow growing but viable at 25° C and temperature-sensitive for growth above 33° C. At restrictive temperature, wat1-d strains are phenotypically indistinguishable from wat1-1. When combined with a deletion for the wat1 + gene, cdc mutants failed to elongate at restrictive temperature and exhibited alterations in actin patch localization. This analysis suggests that wat1 + is required directly or indirectly for polarized cell growth in S. pombe. Wat1p and a functional, epitope-tagged, version of Wat1p can be overproduced without inducing alterations in cell morphology. Received: 18 September 1996 / Accepted: 22 October 1996  相似文献   

8.
A number of DNA damage-inducible genes (DIN) have been identified in Saccharomyces cerevisiae. In the present study we describe isolation of a novel gene, Din7, the expression of which is induced by exposure of cells to UV light, MMS (methyl methanesulfonate) or HU (hydoxyurea). The DNA sequence of DIN7 was determined. By comparison of the predicted Din7 amino acid sequence with those in databases we found that it belongs to a family of proteins which includes S. cerevisiae Rad2 and its Schizosaccharomyces pombe and human homologs Rad13 and XPGC; S. cerevisiae Rad27 and its S. pombe homolog Rad2, and S. pombe Exo I. All these proteins are endowed with DNA nuclease activity and are known to play an important function in DNA repair. The strongest homology to Din7 was found with the Dhs1 protein of S.␣cerevisiae, the function of which is essentially unknown. The expression of the DIN7 gene was studied in detail using a DIN7-lacZ fusion integrated into a chromosome. We show that the expression level of DIN7 rises during meiosis at a time nearly coincident with commitment to recombination. No inducibility of DIN7 was found after treatment with DNA-damaging agents of cells bearing the rad53-21 mutation. Surprisingly, a high basal level of DIN7 expression was found in strains in which the DUN1 gene was inactivated by transposon insertion. We suggest that a form of Dun1 may be a negative regulator of the DIN7 gene expression. Received: 30 May 1996 / Accepted: 26 September 1996  相似文献   

9.
Summary We localized the chromosomal targets of several of the regulatory controls of expression of theCAR1 gene. Fusion tolacZ of several fragments of the 5′ non-coding region showed that induction ofCAR1 by arginine is positively regulated by the products of theARGR genes. The target lies upstream of another site where repression by the CARGRI molecule occurs. The latter control is not specific to arginine catabolism since it also affectsCYC-1 and indeed does not appear to involve arginine. The primary target of the two other regulatory allelesCARGRII andCARGRIII is not situated in the 5′ non-coding region. Deletion analysis supports the fusion data and confirms the order of the regulatory regions: 5′—nitrogen catabolite repression—activation by arginine—CARGRI-mediated repression—CAR1.  相似文献   

10.
The genome of the fungal chickpea pathogen Ascochyta rabiei was screened for polymorphisms by microsatellite-primed PCR. While ethidium-bromide staining of electrophoretically separated amplification products showed only limited polymorphism among 24 Tunisian A. rabiei isolates, Southern hybridization of purified PCR fragments to restriction digests of fungal DNA revealed polymorphic DNA fingerprints. One particular probe that gave rise to a hypervariable single-locus hybridization signal was cloned from the Syrian isolate AA6 and sequenced. It contained a large compound microsatellite harbouring the penta- and decameric repeat units (CATTT)n, (CATTA)n, (CATATCATTT)n and (TATTT)n. We call this locus ArMS1 (Ascochyta rabiei microsatellite 1). Unique flanking sequences were used to design primer pairs for locus- specific microsatellite amplification and direct sequencing of additional ArMS1 alleles from Tunisian and Pakistani isolates. A high level of sequence variation was observed, suggesting that multiple mutational mechanisms have contributed to polymorphism. Hybridization and PCR analyses were performed on the parents and 62 monoascosporic F1 progeny derived from a cross between two different mating types of the fungus. Progeny alleles could be traced back to the parents, with one notable exception, where a longer than expected fragment was observed. Direct sequencing of this new length allele revealed an alteration in the copy number of the TATTT repeat [(TATTT)53 to (TATTT)65], while the remainder of the sequence was unchanged. Received: 11 March 1997 / Accepted: 21 June 1997  相似文献   

11.
In Saccharomyces cerevisiae the metabolite phosphoribosyl-pyrophosphate (PRPP) is required for purine, pyrimidine, tryptophan and histidine biosynthesis. Enzymes that can synthesize PRPP can be encoded by at least four genes. We have studied 5-phospho-ribosyl-1(α)-pyrophosphate synthetases (PRS) genetically and biochemically. Each of the four genes, all of which are transcribed, has been disrupted in haploid yeast strains of each mating type and although all disruptants are able to grow on complete medium, differences in growth rate and enzyme activity suggest that disruption of PRS1 or PRS3 has a significant effect on cell metabolism, whereas disruption of PRS2 or PRS4 has little measurable effect. Using Western blot analysis with antisera raised against peptides derived from the non-homology region (NHR) and the N-terminal half of the PRS1 gene product it has been shown that the NHR is not removed by protein splicing. However, the fact that disruption of this gene causes the most dramatic decrease in cell growth rate and enzyme activity suggests that Prs1p may have a key structural or regulatory role in the production of PRPP in the cell. Received: 15 July 1996 / Accepted: 24 October 1996  相似文献   

12.
13.
14.
15.
16.
17.
The gene cluster (ery) governing the biosynthesis of the macrolide antibiotic erythromycin A by Saccharopolyspora erythraea contains, in addition to the eryA genes encoding the polyketide synthase, two regions containing genes for later steps in the pathway. The region 5′ of eryA that lies between the known genes ermE (encoding the erythromycin resistance methyltransferase) and eryBIII (encoding a putative S-adenosylmethionine-dependent methyltransferase), and that contains the gene eryBI (orf2), has now been sequenced. The inferred product of the eryBI gene shows striking sequence similarity to authentic β-glucosidases. Specific mutants were created in eryBI, and the resulting strains were found to synthesise erythromycin A, showing that this gene, despite its position in the biosynthetic gene cluster, is not essential for erythromycin biosynthesis. A␣mutant in eryBIII and a double mutant in eryBI and eryBIII were obtained and the analysis of novel erythromycins produced by these strains confirmed the proposed function of EryBIII as a C-methyltransferase. Also, a chromosomal mutant was constructed for the previously sequenced ORF19 and shown to accumulate erythronolide B, as expected for an eryB mutant and consistent with its proposed role as an epimerase in dTDP-mycarose biosynthesis. Received: 13 August 1997 / Accepted: 27 November 1997  相似文献   

18.
In order to study the role of signal transduction pathways in the regulation of morphology in Neurospora crassa, we cloned and characterized a ras homologue, termed NC-ras2. The predicted protein product of this gene is composed of 229 amino acid residues and contains all the consensus sequences shared by the ras protein family. The gene is located in linkage group V. An NC-ras2 disruptant showed morphological characteristics very similar to those of the smco7 mutant, which also maps to linkage group V. Nucleotide sequence analysis revealed that the smco7 mutant harbored a single base deletion in the NC-ras2 gene, which is predicted to result in the truncation of the protein product. Introduction into the smco7 mutant of an NC-ras2 clone yielded stable transformants with a wild-type phenotype. The smco7 mutant exhibited very slow hyphal growth and the rate of conidial formation was approximately one two-hundredth of wild type. The smco7 mutation causes both the changes in the pattern of hyphal growth and the defects in cell wall synthesis. Both the diameter and the length of the apical compartment were shorter in the hyphae of the smco7 mutant. These results suggest that NC-ras2 is identical to smco7, and that the signal transduction pathway mediated by the NC-ras2 protein regulates the apical growth of hyphae, cell wall synthesis, and conidial formation in N. crassa. Received: 1 October 1996 / Accepted: 9 December 1996  相似文献   

19.
A transposable element, Flipper, was isolated from the phytopathogenic fungus Botrytis cinerea. The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. The Flipper sequence is 1842 bp long with perfect inverted terminal repeats (ITRs) of 48 bp and an open reading frame (ORF) of 533 amino acids, potentially encoding for a transposase; the element is flanked by the dinucleotide TA. The encoded protein is very similar to the putative transposases of three elements from other phytopathogenic fungi, Fot1 from Fusarium oxysporum, and Pot2 and MGR586 from Magnaporthe grisea. The number of Flipper elements in strains of B. cinerea varied from 0 to 20 copies per genome. Analysis of the descendants of one cross showed that the segregation ratio of Flipper elements was 2:2 and that the copies were not linked. Received: 4 December 1996 / Accepted: 21 January 1997  相似文献   

20.
A Rhizobium etli Tn5mob-induced mutant (CFN035) exhibits an enhanced capacity to oxidize N,N,N′,N′, tetramethyl-p -phenylenediamine (TMPD), a presumptive indicator of elevated cytochrome c terminal oxidase activity. Sequencing of the mutated gene in CFN035 revealed that it codes for the amidophosphoribosyl transferase enzyme (PurF) that catalyzes the first step in the purine biosynthetic pathway. Two c-type cytochromes with molecular weights of 32 and 27 kDa were produced in strain CFN035, which also produced a novel CO-reactive cytochrome (absorbance trough at 553 nm), in contrast to strain CE3 which produced a single 32 kDa c-type protein and did not produce the 553 nm CO-reactive cytochrome. A wild-type R. etli strain that expresses the Bradyrhizobium japonicum fixNOQP genes, which code for the symbiotic cytochrome terminal oxidase cbb 3, produced similar absorbance spectra (a trough at 553 nm in CO-difference spectra) and two c -type proteins similar in size to those of strain CFN035, suggesting that CFN035 also produces the cbb 3 terminal oxidase. The expression of a R. etli fixN-lacZ gene fusion was measured in several R. etli mutants affected in different steps of the purine biosynthetic pathway. Our analysis showed that purF, purD, purQ, purL, purY, purK and purE mutants expressed three-fold higher levels of the fixNOQP operon than the wild-type strain. The derepressed expression of fixN was not observed in a purH mutant. The purH gene product catalyzes the conversion of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) and inosine. Supplementation with AICA riboside lowered the levels of fixN expression in the purF mutants. These data are consistent with the possibility that AICAR, or a closely related metabolite, is a negative effector of the production of the symbiotic terminal oxidase cbb 3 in R. etli. Received: 21 November 1996 / Accepted: 22 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号